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Recent experiments on triangular lattice organic Mott insulators have found evidence for a two-dimensional
�2D� spin liquid in close proximity to the metal-insulator transition. A Gutzwiller wave function study of the
triangular lattice Heisenberg model with a four-spin ring exchange term appropriate in this regime has found
that the projected spinon Fermi sea state has a low variational energy. This wave function, together with a slave
particle-gauge theory analysis, suggests that this putative spin liquid possesses spin correlations that are
singular along surfaces in momentum space, i.e., “Bose surfaces.” Signatures of this state, which we will refer
to as a “spin Bose metal” �SBM�, are expected to manifest in quasi-one-dimensional �quasi-1D� ladder sys-
tems: the discrete transverse momenta cut through the 2D Bose surface leading to a distinct pattern of 1D
gapless modes. Here, we search for a quasi-1D descendant of the triangular lattice SBM state by exploring the
Heisenberg plus ring model on a two-leg triangular strip �zigzag chain�. Using density matrix renormalization
group �DMRG� supplemented by variational wave functions and a bosonization analysis, we map out the full
phase diagram. In the absence of ring exchange the model is equivalent to the J1-J2 Heisenberg chain, and we
find the expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange reveals a new
gapless phase over a large swath of the phase diagram. Spin and dimer correlations possess singular wave
vectors at particular “Bose points” �remnants of the 2D Bose surface� and allow us to identify this phase as the
hoped for quasi-1D descendant of the triangular lattice SBM state. We use bosonization to derive a low-energy
effective theory for the zigzag spin Bose metal and find three gapless modes and one Luttinger parameter
controlling all power law correlations. Potential instabilities out of the zigzag SBM give rise to other interest-
ing phases such as a period-3 valence bond solid or a period-4 chirality order, which we discover in the
DMRG. Another interesting instability is into a spin Bose-metal phase with partial ferromagnetism �spin
polarization of one spinon band�, which we also find numerically using the DMRG.
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I. INTRODUCTION

A promising regime to search for elusive two-dimensional
�2D� spin liquids is in the proximity of the Mott metal-
insulator transition. In such “weak Mott insulators” signifi-
cant local charge fluctuations induce multispin ring exchange
processes which tend to suppress magnetic or other types of
ordering. Indeed, recent experiments1,2 on the triangular lat-
tice based organic Mott insulator �-�ET�2Cu2�CN�3 reveal no
indication of magnetic order or other symmetry breaking
down to temperature several orders of magnitude smaller
than the characteristic exchange interaction energy J
�250 K. Under pressure the �-�ET�2Cu2�CN�3 undergoes a
weak first-order transition into a metallic state, while at am-
bient pressure it has a small charge gap of 200 K, as ex-
pected in a weak Mott insulator. Thermodynamic, transport,
and spectroscopic experiments1,3,4 all point to the presence of
a plethora of low-energy excitations in the
�-�ET�2Cu2�CN�3, indicative of a gapless spin liquid phase.
Several authors have proposed5–7 that this putative spin liq-
uid can be described in terms of a Gutzwiller-projected
Fermi sea of spinons.

Quantum chemistry calculations suggest that a one-band
triangular lattice Hubbard model at half-filling is an appro-
priate theoretical starting point to describe
�-�ET�2Cu2�CN�3.1,8 Variational studies of the triangular lat-
tice Hubbard model9 find indications of a nonmagnetic spin

liquid phase just on the insulating side of the Mott transition.
Moreover, exact diagonalization �ED� studies of the triangu-
lar lattice Heisenberg model show that the presence of a
four-site ring exchange term appropriate near the Mott tran-
sition can readily destroy the 120° antiferromagnetic order.10

One of us5 performed variational wave function studies on
this spin model and found that the Gutzwiller-projected
Fermi sea state6 has the lowest energy for sufficiently strong
four-site ring exchange interactions appropriate for the
�-�ET�2Cu2�CN�3.

Despite these encouraging hints, the theoretical evidence
for a spin liquid phase in the triangular lattice Hubbard
model or Heisenberg spin model with ring exchanges is at
best suggestive. Variational studies are biased by the choice
of wave functions and can be notoriously misleading. Exact
diagonalization studies are restricted to very small sizes, a
fact which is especially problematic for gapless spin liquids.
Quantum Monte Carlo fails due to the sign problem. The
density matrix renormalization group �DMRG� can reach the
ground state of large one-dimensional �1D� systems, but cap-
turing the highly entangled and nonlocal character of a 2D
gapless spin liquid state is a formidable challenge. Thus,
with new candidate spin liquid materials and increasingly
refined experiments available, the gap between theory and
experiment becomes ever more dire.

Effective field theory approaches such as slave particle-
gauge theories or vortex dualities, while unable to solve any
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particular Hamiltonian, do indicate the possibility of stable
gapless 2D spin liquid phases. Such gapless 2D spin liquids
generically exhibit spin correlations that decay as a power
law in space, perhaps with anomalous exponents, and which
can oscillate at particular wave vectors. The location of these
dominant singularities in momentum space provides a con-
venient characterization of gapless spin liquids. In the “alge-
braic” or “critical” spin liquids11–14 these wave vectors are
limited to a finite discrete set, often at high symmetry points
in the Brillouin zone, and their effective field theories can
often exhibit a relativistic structure. But the singularities can
also occur along surfaces in momentum space, as they do in
the Gutzwiller-projected spinon Fermi sea state, the 2D spin
Bose-metal �SBM� phase. It must be stressed that it is the
spin �i.e., bosonic� correlation functions that possess such
singular surfaces—there are no fermions in the system—and
the low-energy excitations cannot be described in terms of
weakly interacting quasiparticles. It has been proposed
recently15 that a 2D “Boson-ring” model describing itinerant
hard-core bosons hopping on a square lattice with a frustrat-
ing four-site term can have an analogous liquid ground state
which we called a d-wave Bose liquid �DBL�. The DBL is
also a Bose-metal phase, possessing a singular Bose surface
in momentum space.

Recently we have suggested16,17 that it should be possible
to access such Bose metals by systematically approaching
two dimensions from a sequence of quasi-1D ladder models.
On a ladder the quantized transverse momenta cut through
the 2D surface, leading to a quasi-1D descendant state with a
set of low-energy modes whose number grows with the num-
ber of legs and whose momenta are inherited from the 2D
Bose surfaces. These quasi-1D descendant states can be ac-
cessed in a controlled fashion by analyzing the 1D ladder
models using numerical and analytical approaches. These
multimode quasi-1D liquids constitute a different and previ-
ously unanticipated class of quantum states interesting in
their own right. But more importantly they carry a distinctive
quasi-1D “fingerprint” of the parent 2D state.

The power of this approach was demonstrated in Ref. 16
where we studied the new Boson-ring model on a two-leg
ladder and mapped out the full phase diagram using the
DMRG and ED, supported by variational wave function and
gauge theory analysis. Remarkably, even for a ladder with
only two legs, we found compelling evidence for the
quasi-1D descendant of the 2D DBL phase. This new
quasi-1D quantum state possessed all of the expected signa-
tures reflecting the parent 2D Bose surface.

In this paper we turn our attention to the triangular lattice
Heisenberg model with ring exchange appropriate for the

�-�ET�2Cu2�CN�3 material. In hopes of detecting the
quasi-1D descendant of the triangular lattice spin Bose metal
�Gutzwiller-projected spinon Fermi sea state�, we place this
model on a triangular strip with only two legs shown in Fig.
1. The all-important ring exchange term acts around four-site
plackets as illustrated; we also allow different Heisenberg
exchange couplings along and transverse to the ladder.

It is convenient to view the two-leg strip as a J1-J2 chain
�studied extensively before18,19� with additional four-spin ex-
changes. The Hamiltonian reads

Ĥ = �
x

�2J1S��x� · S��x + 1� + 2J2S��x� · S��x + 2�

+ Kring�Px,x+2,x+3,x+1 + H.c.�� . �1�

The four-spin operators act as P1234: ��1 ,�2 ,�3 ,�4�
→ ��4 ,�1 ,�2 ,�3�, P1234

† = �P1234�−1. We attack this model us-
ing a combination of numerical and analytical techniques—
DMRG, ED, variational Monte Carlo �VMC�, as well as em-
ploying bosonization to obtain a low-energy effective field
theory from the slave particle-gauge formulation �and/or
from an interacting electron Hubbard-type model�. Our key
findings are summarized in Fig. 2 which shows the phase
diagram for antiferromagnetic couplings J1, J2, and Kring. For
Kring→0, the J1-J2 model has the familiar 1D Bethe-chain
phase for J2�0.24J1 and period-2 valence bond solid
�VBS-2� for larger J2. For Kring�0.2J1, different physics
opens up. In fact, Klironomos et al.20 considered such

J2

J1 Kring

x x+1 x+3x+2

FIG. 1. Top: Heisenberg plus ring exchange model on a two-leg
triangular strip. Bottom: convenient representation of the model as a
J1-J2 chain with additional four-site terms; the Hamiltonian is writ-
ten out in Eq. �1�.
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FIG. 2. �Color online� Phase diagram of the ring model �Eq. �1��
determined in the DMRG using system sizes L=48–96. Filled
squares �red� denote Bethe-chain phase. Open squares �with black
outlines� denote valence bond solid with period 2. Open circles
�blue� denote spin Bose metal. Open circles with crosses denote
where the DMRG has difficulties converging to singlet for the
larger sizes, but where we still think this is spin-singlet SBM. Star
symbols denote points where the ground state appears to have true
nonzero spin �for all points here, the magnetization is smaller than
full polarization of the smaller Fermi sea in the SBM interpreta-
tion�. Filled diamonds �magenta� denote VBS with period 3. Our
identifications are ambiguous in the lower VBS-3 region approach-
ing VBS-2. Lines indicate phase boundaries determined in VMC
using spin-singlet wave functions described in the text �we also
used appropriate dimerized wave functions for the VBS states�. A
detailed study of a cut Kring /J1=1 is presented in Sec. III �cf. Fig.
8�.
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J1-J2-Kring model motivated by the study of Wigner crystals
in a quantum wire.21 Using ED of systems up to L=24, they
found an unusual phase in this intermediate regime, called
“4P” in Fig. 8 of Ref. 20, but it had proven difficult to clarify
its nature. We identify this region as a descendant of the
triangular lattice spin Bose-metal phase �or further deriva-
tives of the descendant as discussed below�.

A caricature of the zigzag spin Bose metal is provided by
considering a Gutzwiller trial wave function construction on
the two-leg strip. The 2D SBM is obtained by letting spinons
hop on the triangular lattice with no fluxes and then
Gutzwiller projecting to get a trial spin wave function. So
here we also take spinons hopping on the ladder with no
fluxes, which is t1-t2 hopping in the 1D chain language that
we mainly use. For t2�0.5t1, the mean field state has one
Fermi sea segment spanning �−� /2,� /2� �spinons are at
half-filling�, and the Gutzwiller projection of this is known to
be an excellent state for the Bethe chain. On the other hand,
for t2�0.5t1, the spinon band has two Fermi seas as shown
in Fig. 3. The Gutzwiller projection of this is a phase that we
identify as a quasi-1D descendant of the triangular lattice
spin Bose metal. The wave function has one variational pa-
rameter t2 / t1 or, equivalently, the ratio of the two Fermi sea
volumes. Using this restricted family of states, our VMC
energetics study of the J1-J2-Kring model finds three regimes
broadly delineated by solid lines in Fig. 3 for larger Kring. �i�
In the Bethe-chain regime the optimal state has one Fermi
sea. �ii� For sufficiently large Kring and upon increasing J2,
we enter a different regime where it is advantageous to start
populating the second Fermi sea. As we further increase J2
moving away from the Bethe-chain phase, we gradually
transfer more spinons from the first to the second Fermi sea.
This whole region is the SBM. �iii� Finally, at still larger J2,
the volumes of the two Fermi seas become equal, which
corresponds to t2 / t1→�, i.e., decoupled-legs limit.

The DMRG is the crucial tool that allows us to answer
how much of this trial state picture actually holds in the
J1-J2-Kring model. Figure 2 shows all points that were studied
using the DMRG and their tentative phase identifications by
looking at various ground-state properties. Remarkably, in a

broad-brush sense, the three regimes found in VMC for
Kring�0.2 �one spinon Fermi sea, two generic Fermi seas,
and decoupled legs� match quite closely different qualitative
behaviors found by the DMRG study and marked as Bethe-
chain, SBM, and VBS-2 regions. Here we note that the
decoupled-legs Gutzwiller wave function is gapless and does
not have VBS-2 order, but it is likely unstable toward open-
ing a spin gap;18,19 still, it is a good initial description for
large J2. On the other hand, away from the decoupled-legs
limit, we expect a stable gapless SBM phase. The DMRG
measures spin and dimer correlations, and we identify the
SBM by observing singularities at characteristic wave vec-
tors that evolve continuously as we move through this
phase—these are the quasi-1D “Bose points” �remnants of a
2D Bose surface�. The singular wave vectors are reproduced
well by the VMC, although the Gutzwiller wave functions
apparently cannot capture the amplitudes and power law ex-
ponents.

An effective low-energy field theory for the zigzag SBM
phase can be obtained by employing bosonization to analyze
either a spinon-gauge theory formulation or an interacting
model of electrons hopping on the zigzag chain. In the latter
case we identify an umklapp term which drives the two-band
metal of interacting electrons through a Mott metal-insulator
transition. The low-energy bosonized description of the Mott
insulating state thereby obtained is identical to that obtained
from the zigzag spinon-gauge theory. In the interacting elec-
tron case, there are physical electrons that exist above the
charge gap. On the other hand, in the gauge theory the
“spinons” are unphysical and linearly confined.

The low-energy fixed-point theory for the zigzag spin
Bose-metal phase consists of three gapless �free Boson�
modes, two in the spin sector and one in the singlet sector
�the latter we identify with spin chirality fluctuations�. Be-
cause of the SU�2� spin invariance, there is only one Lut-
tinger parameter in the theory, and we can characterize all
power laws using this single parameter. The dominant corre-
lations occur at wave vectors 2kF1 and 2kF2 connecting op-
posite Fermi points, and the power law can vary between
x−3/2 and x−1 depending on the value of the Luttinger param-
eter. We understand well the stability of this phase. We also
understand why the Gutzwiller-projected wave functions,
while capturing the singular wave vectors, are not fully
adequate—our trial wave functions appear to be described by
a specific value of the Luttinger parameter that gives x−3/2

power law at 2kF1 and 2kF2. The difference between the
DMRG and VMC in the SBM phase is qualitatively captured
by the low-energy bosonized theory.

The full DMRG phase diagram findings are, in fact, much
richer. Prominently present in Fig. 2 is a new phase occur-
ring inside the SBM and labeled VBS-3. This has period-3
valence bond solid order “dimerizing” every third bond and
also has coexisting effective Bethe-chain-like state formed
by nondimerized spins �see Sec. V A and Fig. 14 for more
explanations�. A careful look at the SBM theory reveals that
at a special commensuration where the volume of the first
Fermi sea is twice as large as that of the second Fermi sea,
the SBM phase can be unstable gapping out the first Fermi
sea and producing such VBS-3 state.

Another observation in Fig. 2 is the possibility of devel-
oping a partial ferromagnetic �FM� moment in the SBM re-
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FIG. 3. �Color online� Spinon dispersion for t2�0.5t1 showing
two occupied Fermi sea segments �here and throughout we use the
1D chain language; see bottom Fig. 1�. Gutzwiller projection of this
is the zigzag SBM state at the focus of this work.
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gion labeled “partial FM” to the left of the VBS-3 phase. We
do not understand all details in this region. In the SBM fur-
ther to the left, we think the ground state is spin singlet,
which is what we find from the DMRG for smaller system
sizes up to L=48. However, the DMRG already has difficul-
ties converging to the spin-singlet state for the larger system
sizes L	96. In the partial FM region, it seems that the
ground state has a small magnetization. Given our SBM pic-
ture, it is conceivable that one or both spinon Fermi seas
could develop some spin polarization. The most likely sce-
nario is for the polarization to first appear in the smaller
Fermi sea since it is more narrow in energy �more flat-band-
like�. The total spin that we measure in the partial FM region
in Fig. 2 is smaller than what would be expected from a full
polarization of the second Fermi sea, and it is hard for us to
analyze such states.

To check our intuition, we have also considered a modi-
fied model with an additional third-neighbor coupling J3

which can be either antiferromagnetic or ferromagnetic tai-
lored to either suppress the ferromagnetic tendencies or to
reveal them more fully. We have studied this model at Kring

=J1=1, varying J2. With antiferromagnetic J3=0.5, we have
indeed increased the stability of spin-singlet states in the
region to the left of the VBS-3. Interestingly, this study,
which is not polluted by the small moment difficulties, also
revealed a spin-gapped phase near the VBS-3. The phase has
a particular period-4 order in the spin chirality, and we can
understand the occurrence as an instability at another com-
mensuration point hit by the singular wave vectors as they
vary in the SBM phase �see Sec. IV E for details�. Turning
now to ferromagnetic J3=−0.5, we have found a more clear
example of the partial ferromagnetism where the ground
state is well described by Gutzwiller projecting a state with a
fully polarized second Fermi sea and an unpolarized first
Fermi sea.

The paper is organized as follows. To set the stage, in Sec.
II we develop general theory of the zigzag SBM phase. In
Sec. III we present the DMRG study of the ring model that
leads to the phase diagram �Fig. 2�. We consider carefully the
cut at Kring=J1 and provide detailed characterization of the
new SBM phase. In Sec. IV we study analytically the stabil-
ity of the SBM. We also consider possible phases that can
arise as some instabilities of the SBM. This is done in par-
ticular to address the DMRG findings of the VBS-3 and
chirality-4 states, which we present in Sec. V. To clarify the
regime to the left of the VBS-3 where the DMRG runs into
convergence difficulties or small moment development, we
also perturb the model with antiferromagnetic �Sec. V B� or
ferromagnetic �Sec. VI� third-neighbor interaction J3 and dis-
cuss partially polarized SBM. Finally, in Sec. VII we briefly
summarize and suggest some future directions one might ex-
plore. In Appendix A, within our effective field theory analy-
sis, we summarize the bosonization expressions for physical
observables that are measured in the DMRG and VMC. In
Appendix B we provide details of the Gutzwiller wave func-
tions that are used throughout in the VMC analysis. In Ap-
pendix C we summarize the DMRG results for the conven-
tional Bethe-chain and VBS-2 phases.

II. SPIN BOSE-METAL THEORY ON THE ZIGZAG STRIP

Since a wave function does not constitute a theory and
can at best capture a caricature of the putative SBM phase, it
is highly desirable to have a field-theoretic approach. The
goal here is to obtain an effective low-energy theory for the
SBM on the zigzag chain. In two dimensions the usual ap-
proach is to decompose the spin operators in terms of an
SU�2� spinor—the fermionic spinons:

S� =
1

2
f	

†�� 	
f
, f	
† f	 = 1. �2�

In the mean field one assumes that the spinons do not interact
with one another and are hopping freely on the 2D lattice.
For the present problem the mean field Hamiltonian would
have the spinons hopping in zero magnetic field, and the
ground state would correspond to filling up a spinon Fermi
sea. In doing this one has artificially enlarged the Hilbert
space since the spinon hopping Hamiltonian allows unoccu-
pied and doubly-occupied sites, which have no meaning in
terms of the spin model of interest. It is thus necessary to
project back down into the physical Hilbert space for the
spin model, restricting the spinons to single occupancy. If
one is only interested in constructing a variational wave
function, this can be readily achieved by the Gutzwiller pro-
jection, where one simply drops all terms in the wave func-
tion with unoccupied or doubly-occupied sites. The alternate
approach to implement the single occupancy constraint is by
introducing a gauge field, a U�1� gauge field in this instance,
which is minimally coupled to the spinons in the hopping
Hamiltonian. This then becomes an intrinsically strongly
coupled lattice gauge field theory. To proceed, it is necessary
to resort to an approximation by assuming that the gauge
field fluctuations are �in some sense� weak. In two dimen-
sions one then analyzes the problem of a Fermi sea of
spinons coupled to a weakly fluctuating gauge field. This
problem has a long history,14,22–29 but all the authors have
chosen to sum the same class of diagrams. Within this �un-
controlled� approximation one can then compute physical
spin correlation functions, which are gauge invariant. It is
unclear, however, whether this is theoretically legitimate, and
even less clear whether or not the spin liquid phase thereby
constructed captures correctly the universal properties of a
physical spin liquid that can �or does� occur for some spin
Hamiltonian.

Fortunately, on the zigzag chain we are in much better
shape. Here it is possible to employ bosonization to analyze
the quasi-1D gauge theory, as we detail below. While this
still does not give an exact solution for the ground state of
any spin Hamiltonian, with regard to capturing universal
low-energy properties it is controlled. As we will see, the
low-energy effective theory for the SBM phase is a Gaussian
field theory, and perturbations about this can be analyzed in a
systematic fashion to check for stability of the SBM and
possible instabilities into other phases.

As we will also briefly show, the low-energy effective
theory for the SBM can be obtained just as readily by start-
ing with a model of interacting electrons hopping on the
zigzag chain, i.e., a Hubbard-type Hamiltonian. If one starts
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with interacting electrons, it is �in principle� possible to con-
struct the gapped electron excitations in the SBM Mott insu-
lator. Within the gauge theory approach, the analogous
gapped spinon excitations are unphysical, being confined to-
gether with a linear potential. Moreover, within the electron
formulation one can access the metallic phase and also the
Mott transition to the SBM insulator.

A. SBM via bosonization of gauge theory

We first start by using bosonization30–32 to analyze the
gauge theory.33–35 Motivated by the 2D triangular lattice with
ring exchanges, we assume a mean field state in which the
spinons are hopping in zero flux. Here the spinons are hop-
ping on the zigzag strip with near-neighbor and second-
neighbor hopping strengths denoted t1 and t2. This is equiva-
lent to a strictly 1D chain with likewise first- and second-
neighbor hoppings. The dispersion is

��k� = − 2t1 cos�k� − 2t2 cos�2k� − � . �3�

For t2�0.5t1 there are two sets of Fermi crossings at wave
vectors 
kF1 and 
kF2 as shown in Fig. 3. Our convention is
that fermions near kF1 and kF2 are moving to the right; the
corresponding group velocities are v1, v2�0. The spinons
are at half-filling, which implies kF1+kF2=−� /2 mod 2�.

The spinon operators are expanded in terms of continuum
fields,

f	�x� = �
a,P

eiPkFaxfPa	, �4�

with a=1,2 denoting the two Fermi seas, 	= ↑ ,↓ denoting
the spin, and P=R /L=
 denoting the right and left moving
fermions. We now use bosonization,30–32 re-expressing these
low-energy spinon operators with bosonic fields,

fPa	 = �a	ei��a	+P�a	�, �5�

with canonically conjugate boson fields,

��a	�x�,�b
�x��� = ��a	�x�,�b
�x��� = 0, �6�

��a	�x�,�b
�x��� = i��ab�	
��x − x�� , �7�

where ��x� is the Heaviside step function. Here, we have
introduced Klein factors, the Majorana fermions 
�a	 ,�b
�
=2�ab�	
, which assure that the spinon fields with different
flavors anticommute with one another. The �slowly varying�
fermionic densities are simply fPa	

† fPa	=�x�P�a	

+�a	� / �2��.
A faithful formulation of the physical system in this slave

particle approach �Eq. �2�� is a compact U�1� lattice gauge
theory. In 1+1D continuum theory, we work in the gauge
eliminating spatial components of the gauge field. The
imaginary-time bosonized Lagrangian density is then

L =
1

2�
�
a	
� 1

va
����a	�2 + va��x�a	�2
 + LA. �8�

Here LA encodes the coupling to the slowly varying 1D �sca-
lar� potential field A�x�,

LA =
1

m
��xA/��2 + i�AA , �9�

where �A denotes the total “gauge charge” density,

�A = �
a	

�x�a	/� . �10�

It is useful to define “charge” and spin boson fields,

�a�/� =
1
�2

��a↑ 
 �a↓� , �11�

and “even” and “odd” flavor combinations,

��
 =
1
�2

��1� 
 �2�� , �12�

with �=� ,�. Similar definitions hold for the � fields. The
commutation relations for the new �, � fields are unchanged.

Integration over the gauge potential generates a mass
term,

LA = m���+ − ��+
�0��2, �13�

for the field ��+=�a	�a	 /2. In the gauge theory analysis, we
cannot determine the mean value ��+

�0�, which is important for
detailed properties of the SBM in Appendix A as well as for
the discussion of nearby phases in Secs. IV B–IV E. But if
we start with an interacting electron model, one can readily
argue that the correct value in the SBM phase satisfies

4��+
�0� = � mod 2� . �14�

B. SBM by bosonizing interacting electrons

Consider then a model of electrons hopping on the zigzag
strip. We assume that the electron hopping Hamiltonian is
identical to the spinon mean field Hamiltonian, with first-
and second-neighbor hopping strengths, t1, t2,

H = − �
x

�t1c	
†�x�c	�x + 1� + t2c	

†�x�c	�x + 2� + H.c.� + Hint.

�15�

The electrons are taken to be at half-filling. The interactions
between the electrons could be taken as a Hubbard repulsion,
perhaps augmented with further-neighbor interactions, but
we do not need to specify the precise form for what follows.

For t2�0.5t1, the electron Fermi sea has only one seg-
ment spanning �−� /2,� /2�, and at low energy the model is
essentially the same as the 1D Hubbard model. We know that
in this case even an arbitrary weak repulsive interaction will
induce an allowed four-fermion umklapp term that will be
marginally relevant driving the system into a 1D Mott insu-
lator. The residual spin sector will be described in terms of
the Heisenberg chain and is expected to be in the gapless
Bethe-chain phase.

On the other hand, for t2�0.5t1, the electron band has
two Fermi seas as shown in Fig. 3. This is the case of pri-
mary interest to us. As in the one-band case, umklapp terms
are required to drive the system into a Mott insulator. But in
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this two-band case there are no allowed four-fermion um-
klapp terms. While it is possible to study perturbatively the
effects of the momentum conserving four-fermion interac-
tions and address whether or not the two-band metal is stable
for some particular form of the lattice Coulomb repulsion,
we do not pursue this here. Rather, we focus on the allowed
eight-fermion umklapp term which takes the form,

H8 = v8�cR1↑
† cR1↓

† cR2↑
† cR2↓

† cL1↑cL1↓cL2↑cL2↓ + H.c.� , �16�

where we have introduced slowly varying electron fields for
the two bands at the right and left Fermi points. For repulsive
electron interactions we have v8�0. This umklapp term is
strongly irrelevant at weak coupling since its scaling dimen-
sion is �8=4 �each electron field has scaling dimension 1/2�,
much larger than the space-time dimension D=2.

To make progress we can bosonize the electrons, just as
we did for the spinons, cPa		ei��a	+P�a	�. The eight-fermion
umklapp term becomes

H8 = 2v8 cos�4��+� , �17�

where as before ��+=�a	�a	 /2 and �e�x�=2�x��+ /� is now
the physical slowly varying electron density. The bosonized
form of the noninteracting electron Hamiltonian is precisely
the first part of Eq. �8�, and one can readily confirm that
�8=4. But now imagine adding a strong density-density re-
pulsion between the electrons. The slowly varying contribu-
tions, on scales somewhat larger than the lattice spacing, will
take the simple form, H�	V��e

2�x�	V���x��+�2. These for-
ward scattering interactions will “stiffen” the ��+ field and
will reduce the scaling dimension �8. If �8 drops below 2
then the umklapp term becomes relevant and will grow at
long scales. This destabilizes the two-band metallic state,
driving a Mott metal-insulator transition. The ��+ field gets
pinned in the minima of the H8 potential, which gives Eq.
�14�. Expanding to quadratic order about the minimum gives
a mass term of form �13�. For the low-energy spin physics of
primary interest this shows the equivalence between the di-
rect bosonization of the electron model and the spinon-gauge
theory approach.

The difference between the spinon-gauge theory and the
interacting electron theory is manifest in the charge sector. In
the latter case the electron excitations c† above the gap will
correspond to instantons connecting adjacent minima of the
cosine potential �Eq. �17��. In the spinon-gauge theory there
are no such fermionic excitations f†, and the spinon excita-
tions are linearly confined. This is appropriate for the spin
model which has no “charge sector” and no notion of
spinons. In the weak Mott insulating phase of the electron
model, the Fermi wave vectors kF1, kF2 denote the momenta
of the minimum energy gapped electron excitations. What is
the meaning, then, of the spinon Fermi wave vectors if the
spinon excitations are unphysical? Within the spinon-gauge
theory the only gauge-invariant �i.e., physical� momenta are
the sums and differences of kF1, kF2, which correspond to
momenta of the �low-energy� spin excitations. In the electron
model, the spin excitations below the charge localization
length of the Mott insulator will be similar to that of elec-
trons in the metal. On longer scales, the spin sector remains
gapless, and this is the regime described below by the low-

energy effective theory of the SBM Mott insulator. It is these
physical longer length scale spin excitations which are cor-
rectly captured by both the spinon-gauge theory and interact-
ing electron approaches.

C. Fixed point theory of the SBM phase

The low-energy spin physics in either formulation can be
obtained by integrating out the massive ��+ field, as we now
demonstrate. Performing this Gaussian integration leads to
the effective fixed-point �quadratic� Lagrangian for the SBM
spin liquid,

L0
SBM = L0

� + L0
�, �18�

with the charge sector contribution,

L0
� =

1

2�g0
� 1

v0
�����−�2 + v0��x��−�2
 , �19�

and the spin sector contribution,

L0
� =

1

2�
�

a
� 1

va
����a��2 + va��x�a��2
 . �20�

The velocity v0 in the charge sector depends on the product
of the flavor velocities, v0=�v1v2, while the dimensionless
“conductance” depends on their ratio,

g0 =
2

�v1/v2 + �v2/v1

. �21�

Notice that g0�1, with g0→0 upon approaching the limit of
a single Fermi surface �v1�0,v2→0� and g0→1 in the limit
of two equally sized Fermi surfaces �v2 /v1→1� that occurs
when the two legs of the triangular strip decouple.

In Sec. IV A, we also consider all symmetry allowed re-
sidual short-range interactions between the low-energy de-
grees of freedom and conclude that the above fixed-point
theory can indeed describe a stable phase, with the only
modification that g0→g is now a general Luttinger param-
eter. Stability requires g�1. There are also three marginal
interactions that need to have appropriate signs to be margin-
ally irrelevant.

The gapless excitations in the SBM lead to power law
correlations in various physical quantities at wave vectors
connecting the Fermi points. Here and in the numerical study

�Sec. III�, we focus on the following observables: spin S��x�,
bond energy B�x� �i.e., VBS order parameter�, and spin
chirality ��x�,

B�x� = S��x� · S��x + 1� , �22�

��x� = S��x − 1� · �S��x� � S��x + 1�� . �23�

In Appendix A, we give detailed expressions in the con-
tinuum theory. The most straightforward contributions are

obtained by writing out, e.g., S��x�	 f†�x��� f�x� in terms of
the continuum fermion fields and then bosonizing �see also
Eqs. �A7� and �A9� for B�x� and ��x��. We expect dominant
power laws at wave vectors 
2kFa and 
� /2= � �kF1
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+kF2�, originating from fermion bilinears composed of a par-
ticle and a hole moving in opposite directions. Such bilinears
become enhanced upon projecting down into the spin sector
�i.e., upon integrating out the massive ��+ in the bosonized
field theory�, and it is possible to compute the scaling dimen-
sion of any operator in terms of the single Luttinger param-
eter, g. It is also important to consider more general contri-
butions, e.g., containing four-fermion fields; this is best done
using symmetry arguments and the corresponding expres-
sions can be found in Appendix A.

Table I summarizes such analysis of the observables by
listing scaling dimensions at various wave vectors. We de-
scribe power law correlation of a given operator A at a wave
vector Q by specifying the scaling dimension �AQ

defined
from the real-space decay,

�A�x�A�0�� 	 �
Q

eiQx

�x�2�AQ

. �24�

The corresponding static structure factor �i.e., Fourier trans-
form� has momentum-space singularity 	�q−Q�2�AQ

−1.
The Q=0 entries in Table I come from simple identifica-

tions

SQ=0
z 	 �x�1� + �x�2�, �25�

BQ=0 	 �x��−, �26�

�Q=0 	 �x��−. �27�

In particular, the last line provides physical meaning to the
“�−” sector—this spin-singlet sector encodes low-energy
fluctuations of the chirality. A direct way to observe the
propagating � mode would be to measure the spectral func-
tion of the chirality, while in the present DMRG study we
detect it by a �q� �i.e., V-shaped� behavior in the static struc-
ture factor at small wave vector q.

III. DMRG STUDY OF THE SPIN BOSE METAL IN THE
J1-J2-Kring MODEL ON THE ZIGZAG CHAIN

We study the ring model �Eq. �1�� on the two-leg triangu-
lar strip shown in Fig. 1. We use the 1D chain picture and
take site labels x=1, . . . ,L, where L is the length of the sys-
tem. We use exact diagonalization �ED� and density matrix
renormalization group �DMRG� �Refs. 36–38� methods
supplemented with variational Monte Carlo �VMC� �Refs. 39

and 40� to determine the nature of the ground state of Hamil-
tonian �1�.

A. Measurement details

We first describe numerical measurements. All calcula-
tions use periodic boundary conditions in the x̂ direction. In
the ED, we can characterize states by a momentum quantum
number k. On the other hand, our DMRG calculations are
done with real-valued wave functions. This gives no ambi-
guity when the ground state carries momentum 0 or � and is
unique. However, if the ground state carries nontrivial mo-
mentum k�0,�, then its time-reversed partner carries −k,
and the DMRG state is some combination of these. While the
real-space measurements depend on the specific combination
in the finite system, the momentum-space measurements de-
scribed below do not depend on this and are unique. Most of
the calculations are done in the sector with Stot

z =0, which
contains any ground state of the SU�2�-invariant system.

The DMRG calculations keep more than m=3200 states
per block36–38 to ensure accurate results, and the density ma-
trix truncation error is on the order of 10−6. Typical relative
error for the ground-state energy is on the order of 10−4 or
smaller for the systems we have studied. Using ED, we have
confirmed that all DMRG results are numerically exact when
the system size is L=24. The DMRG convergence depends
strongly on the phase being studied, the system size, the type
of the correlations, and the distance between operators. In the
Bethe-chain and VBS-2 phases there is still good conver-
gence for size L=192, while in the SBM we are limited to
L=96–144 systems. The entanglement entropy calculations
are done with up to m=6000 states in each block, which is
necessary for capturing the long-range entanglement in the
SBM states where we find an effective “central charge” c
�3.

We have already specified the main observables in Sec.
II C �cf. Eqs. �22� and �23��. We measure spin correlations,
bond energy �dimer� correlations, and chirality correlations
defined as follows:

C�x,x�� = �S��x� · S��x��� , �28�

D�x,x�� = �B�x�B�x��� − �B�2, �29�

X�x,x�� = ���x���x��� . �30�

For simplicity, we set D�x ,x��=0 if bonds B�x� and B�x��
have common sites and similarly for X�x ,x��. Structure fac-

TABLE I. Spin Bose-metal fixed-point theory: scaling dimensions of the spin S� , bond energy B, and
chirality � observables at various wave vectors Q in the top row. Columns with one listed value have all
scaling dimensions equal to this value. Entries with subdominant power laws are listed as “subd.”

Q=0

2kF1,

2kF2 
� /2


�kF2−kF1�,

�3kF1+kF2� � 
4kF1

S� 1 / 2 + g / 4 1 Subd.

B 1 1 / 2 + g / 4 1 / 2 + 1 / 4g 1 / 2 + 1 / 4g + g / 4 1 g

� Subd. 1 /g Subd.
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tors C�q�, D�q�, and X�q� are obtained through Fourier trans-
formation,

O�q� =
1

L
�
x,x�

O�x,x��e−iq�x−x��, �31�

where O=C ,D ,X. We have O�q�=O�−q� and usually show
only 0�q��. The spin structure factor at q=0 gives the
total spin in the ground state,

C�q = 0� =
�S� tot

2 �
L

=
Stot�Stot + 1�

L
. �32�

In all figures, we loosely use �BqB−q� and ��q�−q� to denote
D�q� and X�q�, respectively.

Turning to the VMC calculations, the trial wave functions
are described in broad terms in Sec. I and in more detail in
Appendix B. The states are labeled by occupation numbers
of the two Fermi seas, �N1 ,N2�. Since N1+N2=L /2, there is
only one variational parameter. There are three distinct re-
gimes: �i� N1=L /2, N2=0, i.e., a single Fermi sea, which is
appropriate for the Bethe-chain phase; �ii� N1�N2�0 appro-
priate for the SBM; and �iii� N1=N2=L /4, i.e., decoupled
legs, which is a reasonable starting point for the large J2
limit.

In Appendix B, we describe correlations in the generic
SBM wave functions and identify characteristic wave vectors
2kFa=2�Na /L, a=1,2, and also � /2 �see Sec. II and Table
I�. One observation is that such wave functions correspond to
a special case g=1 in the SBM theory and thus cannot cap-
ture general exponents. Despite this shortcoming, the wave
functions capture the locations of the singular wave vectors
observed in the DMRG. We also try to improve the wave
functions by using a “gapless superconductor” modification
described in Appendix B 2 and designed to preserve the sin-
gular wave vectors while allowing more variational param-
eters. This indeed improves the trial energy and provides
better match with the DMRG correlations at short scales,
even if the long-distance properties are still not captured
fully. When presenting the DMRG structure factors, we also
show the corresponding VMC results for wave functions de-
termined by minimizing the trial energy over the described
family of states.

Using the DMRG, we find four distinct quantum phases in
the J2 /J1−Kring /J1 plane as illustrated in Fig. 2. In the small
Kring region, we have the conventional Bethe-chain phase at
small J2 and valence bond solid state with period 2 �VBS-2�
at larger J2. The SBM phase emerges in the regime Kring
�0.2J1 and dominates the intermediate parameter space. In-
side this region, we discover a VBS state with period 3
�VBS-3�. To fully understand the VBS-3 �in particular, its
relationship to the flanking spin Bose metals� we will need
the stability analysis of the SBM in Sec. IV, while the
DMRG results are discussed afterward in Sec. V.

We explore more finely a cut Kring=J1 through the phase
diagram �Fig. 2�, and our presentation points are taken from
this cut. The Bethe-chain and VBS-2 phases are fairly con-
ventional �for this Kring, the VBS-2 is close to the decoupled-
leg state at large J2 values�. Nevertheless, it is useful to see
measurements in these phases for comparisons. Such ex-

amples are given in Appendix C, while here we focus on the
spin Bose-metal points deep in the phase. We will discuss
more difficult parts of the phase diagram �Fig. 2� once we
have the overall picture of the SBM.

B. Representative spin Bose-metal points

Proceeding along the Kring=J1=1 cut through Fig. 2, we
start in the Bethe-chain phase at large negative J2 �a repre-
sentative point is discussed in Appendix C 1�. As we change
J2 toward positive value, the system undergoes a transition at
J2=−0.6. The new phase has characteristic spin correlations
that are markedly different from the Bethe-chain phase. Fig-
ure 4 shows a representative point J2=0. The DMRG calcu-
lations are more difficult to converge and are done for
smaller size L=144 than in the Bethe-chain phase example
�see also the entanglement entropy discussion below�.

Comparing with the Bethe-chain state �e.g., Fig. 22 in
Appendix C 1�, there is no q=� dominance in the spin struc-
ture factor. Instead, we see three singular wave vectors lo-
cated at 11�2� /144, � /2, and 61�2� /144. Our
Gutzwiller wave functions determined from the energetics
have �N1 ,N2�= �61,11�, and the corresponding 2kF2, −kF2
−kF1=� /2 mod 2�, and 2kF1 match precisely the DMRG
singular wave vectors. The improved Gutzwiller wave func-
tion reproduces crude short-distance features better, but it has
the same long-distance properties as the bare Gutzwiller. As
discussed in Appendix B, our Gutzwiller wave functions do
not capture all power laws predicted in the general analytical
theory. The wave functions appear to have equal exponents
for spin correlations at these three wave vectors, while the
theory summarized in Table I gives stronger singularities at
2kF1, 2kF2 and a weaker singularity at � /2. Very encourag-
ingly, these theoretical expectations are consistent with what
we find in the DMRG, where we can visibly see the differ-
ence in the behaviors at these wave vectors, particularly
when we reference against the VMC results.

Similar discussion applies to the bond energy �dimer� cor-
relations shown in the middle panel of Fig. 4. The dominant
features are at 2kF1 and � /2, and we also see a peak at a
wave vector identified as 4kF2, which is indeed expected
from the SBM theory �cf. Table I�. The theory predicts simi-
lar singularities at 2kF1 and 2kF2, but for some reason we do
not see the 2kF2 in the DMRG data even though it is clearly
present in the bare Gutzwiller. We suspect that this is caused
by the narrowness in energy of the second Fermi sea when
its population is low, so the amplitude of the 2kF2 bond en-
ergy feature may be much smaller. The 2kF2 can still show
up in the bare Gutzwiller since, as we discuss in Appendix B,
this wave function knows only about the Fermi sea sizes and
not about the spinon energy scales such as bandwidths or
Fermi velocities. The improved Gutzwiller clearly tries to
remedy this although within its limitations. The 4kF2 feature
is not associated solely with the second Fermi sea and is less
affected by this argument; indeed, 4kF2=−4kF1 and both
Fermi seas “participate” in producing this feature as can be
seen from Eq. �A31�.

Turning to the chirality structure factor in the bottom
panel of Fig. 4, we see a feature at � /2, which in the SBM
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theory is expected to have the same singularity as the spin
and dimer at this wave vector. We also see features at wave
vectors kF2−kF1 and 3kF1+kF2 in all our observables; these
features are expected to be 	��q� �i.e., V shaped� in the
Gutzwiller wave functions but have weaker singularity in the

SBM theory, which is reasonably consistent with the DMRG
measurements. Very notable in the chirality structure factor
is an 	�q� shape at small q. This can be viewed as a direct
evidence for the gapless �− mode in the SBM �cf. Eq. �27��.
On the other hand, a feature at � is weaker than V shaped, in
contrast with the Gutzwiller wave functions but in agreement
with the SBM theory expectations in Table I.

To summarize, the correlations in the SBM phase are dra-
matically different from the Bethe-chain phase, and we can
match all the characteristic wave vectors using the
Gutzwiller wave functions projecting two Fermi seas. We
also understand the failure of the wave functions to repro-
duce the nature of the singularities and the amplitudes, while
the bosonization theory of the SBM is consistent with all
DMRG observations even when the wave functions fail.

With further increase in J2, continuing along the Kring
=J1=1 cut through Fig. 2, the SBM phase becomes promi-
nently unstable toward the VBS-3 phase occupying the range
1.5�J2�2.5 and described in Sec. V A. Interestingly, as we
increase J2 still further, the SBM phase reappears with its
characteristic correlations shown in Fig. 5 for a representa-
tive point J2=3.2. Much of the SBM physics discussion that
we have just done at J2=0 carries over here, with the appro-
priately shifted locations of the singular wave vectors. The
singularities at wave vectors qlow=2kF2 and qhigh=2kF1 are
now more equally developed and are detected in the spin as
well as dimer structure factors. The two wave vectors are
closer to � /2 and are located symmetrically in accordance
with the general “sum rule” 2kF1+2kF2=�, while the com-
parable strengths reflect the more similar energy bandwidths
of the two Fermi seas. The apparent lack of the wave vector
� /2 in the DMRG dimer structure factor is similar to that in
the Gutzwiller wave function and is a matrix element effect
for the first-neighbor bond when the sizes of the two Fermi
seas approach each other. On the other hand, the strength of
the 4kF2 dimer feature is very notable here; it can indeed be
dominant in the SBM theory for sufficiently small Luttinger
parameter g �cf. Table I�. The improved Gutzwiller wave
function modifies the structure factors in the right direction
but clearly does not succeed reproducing them
accurately—as noted before, our wave functions do not con-
tain the full physics expected in the bosonized theory.

One technical remark that we want to make here is that
the DMRG ground state at this point J2=3.2 and size L
=144 appears to have nontrivial momentum quantum num-
ber k�0,�. We deduce this by observing that the measured
correlations O�x ,x�� depend not just on x−x� but on both x
and x� and by seeing characteristic beatings as a function of
x and x� �while the q-space structure factors are well con-
verged�. On the other hand, the VMC wave function shown
in Fig. 5 has momentum zero �see Appendix B� and all mea-
surements depend on x−x� only. If we assume that the beat-
ings originate from the DMRG state being a superposition of
�k� and �−k�, we can extract 2k and find it to be consistent
with the state �k� constructed from the VMC by moving one
spinon across one of the Fermi seas �2k=4kF2=−4kF1�. It is
plausible that such state happens to have a slightly lower
energy in the given finite system �e.g., at the same J2=3.2,
we find trivial k for L=72 but nontrivial k for L=96, likely
reflecting finite-size effects on the filling of the last few

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 2kF2 3kF1+kF2 π/2 kF2-kF1 2kF1 π

S
pi

n
st

ru
ct

ur
e

fa
ct

or
<
S

q
•
S

-q
>

q

Kring = J1 = 1, J2 = 0, J3 = 0; L=144

DMRG
Gutzw (61, 11)

Gutzw improved

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0 2kF2 3kF1+kF2 π/2 kF2-kF1 2kF1 π

D
im

er
st

ru
ct

ur
e

fa
ct

or
<
B

q
B

-q
>

q

4kF2

DMRG
Gutzw (61, 11)

Gutzw improved

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0 3kF1+kF2 π/2 kF2-kF1 π

C
hi

ra
lit

y
st

ru
ct

ur
e

fa
ct

or
<

χ q
χ -

q>

q

DMRG
Gutzw (61, 11)

Gutzw improved

FIG. 4. �Color online� Spin, dimer, and chirality structure fac-
tors at a representative point in the spin Bose-metal phase, Kring

=J1=1, J2=0 �close to the Bethe-chain phase�, measured in the
DMRG for system size L=144. We also show the structure factors
in the Gutzwiller projection of two Fermi seas �N1 ,N2�= �61,11�
and in the improved Gutzwiller wave function with parameters f0

=1, f1=0.65, and f2=−0.5 �see Appendix B; the parameters are
determined by optimizing the trial energy within the given family of
states�. Vertical lines label important wave vectors expected in the
SBM theory for such spinon Fermi sea volumes. We discuss the
comparison of the DMRG, VMC, and analytical theory in the text.
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spinon orbitals�. We have not attempted to construct a trial
spin-singlet state with the right momentum quantum number
for the present L. Still, we expect that the structure factors
are not very sensitive to such rearrangements of few spinons
in the large system limit. Indeed, we find that the structure
factors have the same features for different system lengths

L=72, 96, and 144. It is also worth repeating that our struc-
ture factor measurements using Eq. �31� do not depend on
which specific combination of �k� and �−k� is found by the
DMRG procedure.

C. Evolution of the singular wave vectors in the SBM

We further illustrate the spin Bose metal by showing evo-
lution of the DMRG structure factors and singular wave vec-
tors as we move inside the phase. The spin and dimer struc-
ture factors are shown in Fig. 6 for L=96 and varying
parameter J2 /J1 inside the SBM phase adjacent to the Bethe-
chain phase. With increasing J2, the singular wave vector
qhigh �identified as 2kF1 in the VMC� is moving away from �
toward smaller values, while the singular wave vector qlow
�identified as 2kF2� is moving to larger values; this corre-
sponds to spinons being transferred from the first to the sec-
ond Fermi sea as found in the VMC energetics. The spin and
dimer correlations show similar behavior at 2kF1, and both
have features also at the wave vector � /2. The lack of visible
dimer feature at 2kF2 was discussed for the point J2=0 ear-
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FIG. 5. �Color online� Spin, dimer, and chirality structure fac-
tors at a representative point in the spin Bose-metal phase, Kring

=J1=1, J2=3.2, �between the VBS-3 and VBS-2 phases� measured
in the DMRG for system size L=144. We also show results in the
Gutzwiller projection of two Fermi seas �N1 ,N2�= �44,28�, and in
the improved Gutzwiller wave function with parameters f0=1, f1

=0.75, and f2=−0.1 �see Appendix B for details�. Vertical lines
label important wave vectors expected in the SBM theory. We dis-
cuss the comparison of the DMRG, VMC, and analytical theory in
the text.
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FIG. 6. �Color online� Evolution of the structure factors in the
spin Bose-metal phase between the Bethe-chain and VBS-3 �or par-
tial FM�, measured by the DMRG for system size L=96. We can
track singular wave vectors �Bose surfaces� as spinons are trans-
ferred from the first to the second Fermi sea upon increasing J2. In
the spin structure factor, the wave vector qhigh that starts near � is
identified as 2kF1 and the wave vector qlow that starts near 0 is
identified as 2kF2 �see Fig. 4 and text for details�. The qhigh and qlow

are summarized in Fig. 8.
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lier, and it is likely that something similar is at play here. On
one hand, the second band is narrow when we just enter the
SBM since the second Fermi sea starts small. On the other
hand, in the region labeled partial FM close to the VBS-3
phase in Fig. 2, the DMRG finds nonzero magnetization in
the ground state. We think that this occurs in the second
Fermi sea and indicates an effective narrowness of this band
near the VBS-3 phase as well, so the 2kF2 energy feature
may indeed be weak in the whole SBM phase between the
Bethe-chain and VBS-3.

We think that the same physics also starts causing conver-
gence difficulties in the DMRG for the L=96 systems shown
in Fig. 6. Specifically, we can use Eq. �32� to extract the
ground-state spin Stot and find noninteger values of order 1,
e.g., Stot�Stot+1�=0.3, 1.0, 1.9, 2.1, and 3.4 for the points
J2=0, 0.2, 0.4, 0.6, and 0.8 in Fig. 6. This can only happen if
the DMRG is not converged and is mixing several states that
are close in energy but have different spins. Correspondingly,
we observe a difference between �Sq

zS−q
z � and �Sq

xS−q
x � struc-

ture factors �recall that we are working in the sector Stot
z =0�.

We do not show these graphs, but the difference is localized
near 2kF2, where the �Sq

zS−q
z � has much sharper feature while

the �Sq
xS−q

x � has weaker feature. On the other hand, there is
essentially no difference near 2kF1. This strongly suggests
that the origin of the convergence difficulties lies with the

second Fermi sea. The �S�q ·S�−q� structure factor that is shown
in Fig. 6 does not mix different Stot states but only adds the
corresponding structure factors and is less sensitive to these
convergence issues. The fact that the peaks in the top panel
of Fig. 6 are located symmetrically with respect to � /2 sug-
gests that this region is still spin-singlet SBM �but is on the
verge of some magnetism in the second band�. Finally, the
Stot values for the same parameters but system size L=48 are
indeed well converged to zero �however with increasing
number of states needed in the DMRG blocks for larger J2�.
We thus conclude that the points in Fig. 6 are spin-singlet
SBM. The DMRG convergence difficulties for the larger L
are in accord with the presence of many low-energy excita-
tions �see also the discussion of the entanglement entropy
below�. We will further test our intuition that this region is
close to some weak subband ferromagnetism in Secs. V B
and VI by adding antiferromagnetic or ferromagnetic J3 to
suppress or enhance the FM tendencies.

Consider now Fig. 7 that shows evolution of the structure
factors in the SBM phase between the VBS-3 and VBS-2.
The qhigh=2kF1 and qlow=2kF2 continue moving toward each
other with increasing J2, and the spin structure factors be-
come nearly symmetric with respect to � /2. When the qhigh
and qlow peaks merge at � /2, which in the VMC would
correspond to decoupled legs, one expects18,19 that a new
instability will likely emerge resulting in a VBS-2 state �we
discuss a representative point in Appendix C 2�.

A very notable feature in the SBM dimer structure factor
is the strong 4kF2 peak. Foretelling a bit, this peak can be
traced as evolving out of the dimer Bragg peak at 2� /3 of
the VBS-3 phase to be discussed in Sec. V A. Turning this
around and approaching the VBS-3 phase by decreasing J2,
we can view the VBS-3 as an SBM instability when the
dimer 4kF2 peak merges with the 2kF1 singularity, 4kF2
=2kF1=2� /3.

Finally, in this SBM region the DMRG converges well to
spin-singlet states. The remark we made when discussing the
point J2=3.2 applies to all points shown in Fig. 7 with L
=96: they show correlations O�x ,x�� beating in both x and
x�, which can be interpreted similarly to the earlier J2=3.2
case by assuming superposition of degenerate ground states
with opposite momentum quantum numbers.

Figure 8 summarizes the singular spin wave vectors ex-
tracted from plots like Figs. 6 and 7, superimposed on the
phase diagram of the model along the cut Kring=J1. Remark-
ably, the singular wave vectors throughout the entire SBM
phase are well captured by the improved Gutzwiller wave
functions, as we have illustrated in Figs. 4 and 5. These
singular wave vectors are intimately connected to the sign
structure of the ground-state wave function, indicating a
striking coincidence between the exact DMRG ground-state
wave function and the Gutzwiller-projected VMC wave
function. Besides the SBM regions, Fig. 8 also shows the
Bethe-chain �cf. Appendix C 1�, VBS-2 �Appendix C 2�, and
VBS-3 �Sec. V A� phases.

We now mention more difficult points in the overall phase
diagram. The lightly hatched SBM region in Fig. 8 indicates

0.0

0.5

1.0

1.5

2.0

0 π/2 π

S
pi

n
st

ru
ct

ur
e

fa
ct

or
<
S

q
•
S

-q
>

q

Kring = J1 = 1, J3 = 0, varying J2; L=96

2kF1
2kF2

J2 = 2.8
3.0
3.2
3.4

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 π/2 2π/3 π

D
im

er
st

ru
ct

ur
e

fa
ct

or
<
B

q
B

-q
>

q

2kF1

2kF2

4kF2J2 = 2.8
3.0
3.2
3.4

FIG. 7. �Color online� Evolution of the structure factors in the
spin Bose-metal phase between VBS-3 and VBS-2, measured by
the DMRG for system size L=96. The qhigh=2kF1 and qlow=2kF2

bracket the � /2 and approach each other with increasing J2 �they
are summarized in Fig. 8�. Very notable here is the strong 4kF2 peak
in the dimer structure factors that evolves out of the Bragg peak
present in the VBS-3 phase at 2� /3 �see Sec. V A and Fig. 15�; the
2kF1 moves away from the 2� /3 in the opposite direction.
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the discussed rising DMRG difficulties of not converging to
an exact singlet for L=96. Such DMRG states are shown as
open circles with crosses in Fig. 2. As we have already men-
tioned, the estimated Stot values are not converged and are of
order 1 for L=96 �but are converged to zero for L=48�,
while qlow and qhigh are located symmetrically around � /2;
all this suggests that the phase is spin-singlet SBM. On the
other hand, at points J2=1.2–1.5 not marked in Fig. 8 but
shown as star symbols in Fig. 2, the estimated Stot values are
larger and the apparent dominant wave vectors are no longer
located symmetrically. Here we suspect a modification of the
ground state, likely toward partial polarization of the second
Fermi sea; this partial FM region is also indicated by cross
hatching in Fig. 8.

D. Entanglement entropy and effective central
charge in the SBM

We explore properties of the SBM phase that can further
distinguish it from the Bethe-chain and VBS states. Earlier
we have noted that we need to keep more states per block to
achieve similar convergence for the SBM phase in compari-
son with the Bethe-chain and VBS phases, indicating stron-
ger entanglement between subsystems in the SBM.
Bosonization analysis finds that the SBM fixed-point theory
has three free Boson modes. One can associate a central
charge 1 with each mode. Despite the fact that they have
different velocities �so the full system is not conformally
invariant�, we expect that the total entanglement entropy
should have a universal behavior described by a combined
central charge c=3.

In general, for a one-dimensional gapless state with con-
formally invariant correlation functions in space-time, the
entanglement entropy for a finite subsystem of length X in-

side a system of length L with periodic boundary conditions
varies as41

S�X,L� =
c

3
log� L

�
sin

�X

L
� + A , �33�

where A is a constant �independent of the subsystem length�
and c is the effective central charge. The virtue of the en-
tanglement entropy is that it does not depend on the mode
velocities and in principle measures the number of gapless
modes directly from the ground-state wave function.

Figure 9 shows the entanglement entropy S�X ,L� as a
function of X for different quantum phases for a finite system
length L=72. The results are obtained from the DMRG for
representative points taken from the same cut Kring=J1=1
discussed earlier. The entropy can be well fitted by the ansatz
�Eq. �33�� with different c values.

The Bethe-chain state �at J2=−1� gives central charge c
=1.0 consistent with one gapless mode. On the other hand,
the entanglement entropy for either of the two SBM ex-
amples J2=0 and J2=3.2 is much larger and can be fitted by
close values c=3.1 and c=3.2, respectively. The closeness of
the central charges in these two different SBM states �cf.
Figs. 4 and 5� indicates the universal behavior of the en-
tanglement which is independent of the details such as the
relative sizes of the spinon Fermi seas.

Interestingly, the VBS-2 point at J2=4 is fitted by c=2.1,
which is related to the fact that the wave function is close to
the decoupled-legs limit �see Appendix C 2 and Fig. 23�, and
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FIG. 8. �Color online� Cut through the phase diagram �Fig. 2� at
Kring /J1=1, showing evolution of the most prominent wave vectors
in the spin structure factor. In the Bethe-chain phase we have sin-
gular antiferromagnetic qAF=� �cf. Fig. 22�. In the spin Bose metal
we have singular qhigh=2kF1 and qlow=2kF2 located symmetrically
about � /2 �cf. Figs. 6 and 7�. In the VBS-3 we have singular qAF

=� /3 �cf. Fig. 15�. In the VBS-2 region for large J2 �cf. Fig. 23�,
we have dominant correlations at � /2 corresponding to the decou-
pled legs fixed point, which is likely to be unstable toward opening
a spin gap �Refs. 18 and 19�. The dotted lines show results for the
improved Gutzwiller wave function.
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chain�, c=3.1 �SBM at J2=0�, c=3.2 �SBM at J2=3.2�, c=1.6
�VBS-3�, and c=2.1 �VBS-2�.
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this L=72 system “does not know” about the eventual spin
gap and very small dimerization.

Finally, the fitted effective central charge for the VBS-3
example is around c=1.6. The oscillatory behavior of S�X�
reflects translational symmetry breaking in the DMRG state.
Note that the entropy values are larger here compared with
the Bethe-chain or VBS-2 cases, a fact which is probably due
to a mix of degenerate states in the DMRG wave function.
However, the overall X dependence is clearly weaker than in
the VBS-2 and is approaching the Bethe-chain behavior for
large X.

To better understand finite-size effects, we focus on the
SBM and Bethe-chain phases and discuss the universal de-
pendence of the entropy on the scaling variable d= L

�sin�X
L .

Figure 10 shows S�X ,L� as a function of d for several system
sizes for the SBM point J2=0 and the Bethe-chain point J2
=−1.

At the SBM point, the data for the two larger sizes L
=60 and 72 collapse onto one curve, which can be reason-
ably fitted by S�X ,L�= �3.1 /3�log�d�+0.88, strongly suggest-
ing the effective central charge c�3. The smaller sizes L
=24 and 48 have somewhat shifted entropy values compared
with the L=60 and 72 collapse but show roughly similar
slope for the largest d. The differences are likely due to
finite-size shell filling effects. Indeed, we can measure the
structure factors and characterize the presumed SBM states
by the spinon occupation numbers of the two Fermi seas; we
find �N1 ,N2�= �10,2�, �20,4�, �26,4�, and �31,5� for L=24,
48, 60, and 72, respectively, and these numbers in each
Fermi sea do not precisely “scale” with L.

On the other hand, the Bethe-chain case does not have
such effects and data for all sizes collapse. The results can be
well fitted by S�X ,L�= �1 /3�log�d�+0.99 as shown in the
same figure for system sizes L=24–96. We note that while
the entropy for the Bethe-chain phase for L=96 is fully con-
verged by keeping up to m=4200 states in the DMRG block,
the entropy for the SBM for L=72 is still increasing slowly
with the number of states kept, and we estimate that the error
in S�X=L /2,L� is around a few percent when m=6000 states
are kept per block �comparing to an extrapolation to m=��.
Indeed, the SBM data for L=72 are bending down slightly
from the fitted line at the larger d corresponding to X	L /2,
as can be seen in Fig. 10, which is probably because the data
are less converged.

To summarize, the entanglement entropy calculations es-
tablish the SBM as a critical phase with three gapless modes
and clearly distinguish it from the Bethe-chain and VBS-2
phases �or the decoupled-legs limit�. We also note that the
structure factor measurements and detection of all features as
in Figs. 6 and 7 did not require as much effort and was done
for larger sizes than the entropy; however, to characterize the
long-distance power laws accurately one would probably
need to capture all entanglement, which we have not
attempted.

IV. STABILITY OF THE SPIN BOSE-METAL PHASE;
NEARBY PHASES OUT OF THE SBM

A. Residual interactions and stability of the SBM

We account for residual interactions between low-energy
degrees of freedom in the SBM theory �Sec. II� by consider-
ing all allowed short-range interactions of the spinons. The
four-fermion interactions can be conveniently expressed in
terms of chiral currents,

JPab = fPa	
† fPb	, J�Pab =

1

2
fPa	

† �� 	
fPb
. �34�

We assume that interactions that are chiral, say involving
only right movers, can be neglected apart from velocity
renormalizations. The most general four-fermion interactions
which mix right and left movers can be succinctly written as

L1
� = �

a,b
�wab

� JRabJLab + �ab
� JRaaJLbb� , �35�

L1
� = − �

a,b
�wab

� J�Rab · J�Lab + �ab
� J�Raa · J�Lbb� , �36�

with w11=w22=0 �convention�, w12=w21 �from Hermiticity�,
and �12=�21 �from R↔L symmetry�. There are eight inde-
pendent couplings: w12

�/�, �11
�/�, �22

�/�, and �12
�/�.

We treat these interactions perturbatively as follows. First
we bosonize the interactions and obtain terms quadratic in
�x�a	 and �x�a	, as well as terms involving products of four
exponentials e
i�a	 and e
i�a	. We next impose the condition
that ��+ is pinned and compute the scaling dimensions of the
exponential operators.

The w12
�/� terms give

W � �w12
� JR12JL12 − w12

� J�R12 · J�L12� + H.c. �37�
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FIG. 10. �Color online� Entanglement entropy for various sys-
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to Eq. �33� done for the larger sizes. The Bethe-chain data collapse
well and are fitted with c=1. The SBM data are fitted with c=3.1
�we show the same fit as in Fig. 9 for this SBM point�. The collapse
of different L is less good, which is likely due to imprecise scaling
of the discrete shell filling numbers with L �see text for details�.
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=cos�2��−�
4w12
� �cos�2��−� − �̂ cos�2��−��� �38�


− w12
� �cos�2��−� + �̂ cos�2��−� + 2�̂ cos�2��+��� ,

�39�

where

�̂ = �1↑�1↓�2↑�2↓. �40�

The w12
�/� terms have scaling dimension 1+g0

−1�2 and are
irrelevant in the bare theory �Eq. �18��, and henceforth
dropped. The detailed W expression will be used later when
we analyze phases neighboring the SBM.

The remaining exponentials only depend on the fields �a�

and �a� so that the charge and spin sectors decouple. Since
the rest of L1

� is quadratic, L�=L0
�+L1

� takes the same form
as L0

� in Eq. �19� except with g0 ,v0→g ,v, where

g2 = 4
�v1 − �11

� /���v2 − �22
� /�� − ��12

� /��2

�v1 + v2 − 2�12
� /��2 − ��11

� /� + �22
� /��2 , �41�

v =
g

2
�v1 + v2 + �11

� /� + �22
� /� − 2�12

� /�� . �42�

In the spin sector, the remaining interactions are given by

L̃1
� = − �

a

�aa
� J�Raa · J�Laa − �12

� �J�R11 · J�L22 + J�L11 · J�R22� .

�43�

When we write this in the bosonization, the JR
z JL

z pieces con-
tribute to the harmonic part of the action,

Vz = �
a

�aa
�

8�2 ���x�a��2 − ��x�a��2� �44�

+
�12

�

4�2 ���x�1����x�2�� − ��x�1����x�2��� , �45�

while the JR
+JL

−+JR
−JL

+ produce nonlinear potential,

V� = �
a

�aa
� cos�2�2�a�� �46�

+ 2�12
� �̂ cos�2��+�cos�2��−� . �47�

A one-loop renormalization group �RG� analysis gives the
following flow equations:

d�aa
�

d�
= −

��aa
� �2

2�va
,

d�12
�

d�
= −

��12
� �2

��v1 + v2�
. �48�

When �11
� , �22

� , and �12
� are positive, they scale to zero and

the quadratic SBM Lagrangian L0
SBM �Eq. �18�� is stable. We

also require that the renormalized g is smaller than 1 so that
the w12

�/� terms in Eq. �37� remain irrelevant. In Sec. IV B, we
consider what happens when g�1 or when some of the �11

� ,
�22

� , and �12
� change sign and become marginally relevant.

The above stability considerations are complete for ge-
neric incommensurate Fermi wave vectors. At special com-

mensurations, new interactions may be allowed and can po-
tentially destabilize the SBM. Such situations need to be
analyzed separately, and in Secs. IV D and IV E we consider
cases relevant for the VBS-3 and chirality-4 phases found by
the DMRG in the ring model �Secs. V A and V B�.

We want to make one remark about the allowed interac-
tions, which will be useful later. Let us ignore for a moment
the pinning of ��+; for example, let us think about the elec-
tron interactions in the approach of Sec. II B. Three of the
eight � and � fields, namely, ��+, ��+, and ��−, do not appear
as arguments of the cosines, and the action has continuous
symmetries under independent shifts of these. The first two
symmetries correspond to microscopic conservation laws for
the total charge Q	��x��+ and the total spin Sz	��x��+. On
the other hand, the invariance under the shifts of ��− corre-
sponds to the conservation of X=NR1−NL1−NR2+NL2
	��x��−, where NPa denotes the total number of fermions
near Fermi point PkFa. This is not a microscopic symmetry
but emerges in the continuum theory for generic kF1, kF2.
Indeed, writing the total momentum P= �NR1−NL1�kF1
+ �NR2−NL2�kF2=XkF1− �NR2−NL2�� /2, we see that any at-
tempt to change X violates the momentum conservation ex-
cept for special commensurate kF1. We thus conclude that
��+ and ��+ can never be pinned by the interactions, while
��- cannot be pinned generically except at special commen-
surate points.

B. Gapped paramagnets when g�1

We now consider phases that can emerge as some insta-
bilities of the spin Bose metal. We use heavily the bosoniza-
tion expressions for various observables given in Appendix
A. As we have already mentioned, when g�1 the interac-
tions in Eq. �37� are relevant and the SBM phase is unstable.
We can safely expect that as a result of the runaway flows,
the variables ��− and ��+ will be pinned. The situation is less
clear with the remaining parts of the potential since we can-
not pin simultaneously ��− and ��−. Still, it is possible that
the situation is resolved by pinning one variable or the other.
For example, depending on whether w12

� and w12
� have the

same or opposite signs, it is advantageous to pin ��− or ��−.
If either pinning scenario happens, there remain no gapless
modes in the system. It is readily established in the cases
below that all spin correlations are short ranged, i.e., we have
fully gapped paramagnets; also, �B���0 in all cases, so the
translational symmetry is necessarily broken.

1. w12
� w12

� �0 and pinned ��− ,��+ ,��−: Period-2 VBS

Consider the case when the ��− is pinned. Using Appen-
dix A, we see that B� obtains an expectation value, while
B�/2 and ��/2 are short ranged. It is natural to identify this
phase as a period-2 valence bond solid shown in Fig. 11. The
pinning values and therefore some details of the state will
differ depending on the sign of the coupling w12

� , but in either
case the ground state is twofold degenerate. �Here and below,
when we find pinning values of appropriate �’s and �’s mini-
mizing a given potential, we determine which solutions are
physically distinct by checking if they produce distinct
phases mod 2� in the bosonization �Eq. �5��. More practi-
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cally, following Ref. 31 �Sec. IVE1�, the chiral fermion fields
remain unchanged under �a	→�a	+���Ra	+�La	�, �a	

→�a	+���Ra	−�La	�, where �Pa	 can be arbitrary integers.
This gives redundancy transformations for the �
, �
 fields
that we use to check if the minimizing solutions are physi-
cally distinct.�

2. w12
� w12

� �0 and pinned ��− ,��+ ,��−: Period-4 structures

Consider now the case when the ��− is pinned. We find
that either ��/2 in Eq. �A42� or ��/2 in Eq. �A43�, but not
both, obtains an expectation value. Thus we either have a
period-4 VBS or a period-4 structure in the chiralities. Which
one is realized depends on details of the pinning.

As described in Appendix A, we work with the +1 eigen-

state of the operator �̂ �our Eqs. �A42� and �A43� already
assume this�. With this choice, to minimize the potential in
Eq. �37� we require

cos�2��−� = cos�2��+� = 
 1. �49�

Depending on the sign of w12
� , we have

�a� w12
� � 0: cos�2��−� = − cos�2��+� , �50�

�b� w12
� � 0: cos�2��−� = cos�2��+� . �51�

�a� In this case, ���/2��0, ���/2�=0, i.e., we find period-4
valence bond order. Note that ���/2� can take four indepen-
dent values ���/2�=ei	=e
i�/4 ,e
i3�/4, where we have as-
sumed that ��+ is fixed by Eq. �14�. To visualize the state, we
examine the corresponding contributions to the first- and
second-neighbor bond energies,

�Bx,x+1 	 cos��

2
x +

�

4
+ 	� = 
+ ,0,− ,0, . . .� , �52�

�Bx,x+2 	 cos��

2
x +

�

2
+ 	� = 
+ ,− ,− , + , . . .� . �53�

One can either use symmetry arguments or write out the
microscopic hopping energies explicitly to fix the phases as
above �see Eq. �A8�, which generalizes to nth neighbor bond
as BQ

�n�	einQ/2�Q for Q���. Each line also shows schemati-
cally the sequence of bonds starting at x=0 for 	=−� /4.
The four independent values of 	 correspond to four trans-
lations of the same VBS state along x. The pattern of bonds
is shown in Fig. 12, where the more negative energy is as-

sociated with the stronger dimerization. When viewed on the
two-leg ladder, this state can be connected to a state with
independent spontaneous dimerization in each leg.

�b� Here we have ���/2�=0, ���/2��0, i.e., period-4 struc-
ture in the chirality �. The pattern is

��x� 	 cos��

2
x + 	� = 
+ ,− ,− , + , . . .� . �54�

There are four independent values of ���/2�=ei	

=e
i�/4 ,e
i3�/4, corresponding to four possible ways to reg-
ister this pattern on the chain. The state is illustrated in Fig.
13. When drawn on the two-leg ladder, chiralities on the
upward pointing triangles alternate along the strip and so do
chiralities on the downward pointing triangles.

3. Gapped phases in the spinon language

With an eye toward what might happen in the 2D spin
liquid, it is instructive to discuss the above phases in terms of
the spinons. To this end, we can rewrite the W term �Eq.
�37�� as follows:

W = �w12
� + w12

� /4��P1
†P2 + H.c.� �55�

− �w12
� − w12

� /4���fR1
† fL2��fL1

† fR2� + H.c.� . �56�

Here Pa
†= fRa↑

† fLa↓
† − fRa↓

† fLa↑
† creates a “Cooper pair” in band

a. The preceding two sections can be then viewed as follows.
When w12

� w12
� �0, we minimize the first line by “pairing and

condensing” the spinons; once everything is done, we get the
period-2 VBS state. On the other hand, when w12

� w12
� �0, we

minimize the second line by developing expectation values
in the particle-hole channel. Using

FIG. 11. Valence bond solid with period 2, where thicker lines
indicate stronger bonds. To emphasize the symmetries of the state,
we also show second- and third-neighbor bond energies, but details
can be different in different regimes. For example, the VBS-2 state
in the Kring=0 case has dominant first-neighbor dimerization. On
the other hand, in the model with Kring=J1=1, J3=0.5, the putative
VBS-2 region between the Bethe-chain and SBM phases in Fig. 16
has significant third-neighbor modulation but only very small first-
neighbor one.

FIG. 12. Top: valence bond solid with period 4 suggested as one
of the instabilities out of the spin Bose-metal phase �Sec.
IV B 2�a��. Thick lines indicate stronger bonds. Bottom: in the two-
leg triangular ladder drawing, we see roughly independent sponta-
neous dimerization in each leg.

FIG. 13. Top: chirality order with period 4 suggested as one of
the instabilities out of the SBM phase �Sec. IV B 2�b��. In the 1D
chain picture, the chirality pattern is given by Eq. �54�; ��x� is
associated with the �x−1,x ,x+1� loop and the arrows on the links
show one “gauge choice” to produce such “fluxes” in the spinon
hopping. Bottom: in the two-leg triangular ladder drawing, we see
alternating chiralities on the up triangles along the strip and alter-
nating chiralities on the down triangles.
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�fR1
† fL2��fL1

† fR2� + H.c. = 2���/2
† ��/2 − ��/2

† ��/2� , �57�

we get either the period-4 dimer or period-4 chirality order
depending on the sign of w12

� .

C. Nearby phases obtained when some of the J�R ·J�L

interactions [Eq. (43)] become marginally relevant

Let us now assume g�1, so the singlet �− sector is not a
priori gapped. We consider what happens when some of the
couplings �11

� , �22
� , and �12

� in Eq. �43� change sign and be-
come marginally relevant. We analyze this as follows. Con-
sider the potential V� �Eq. �47�� again working with the +1

eigenstate of the operator �̂. If one �or several� of the cou-
plings becomes negative, we have runaway flows �Eq. �48��
to more negative values. We then consider pinned field con-
figurations that minimize the relevant part of the V�—this is
what happens in the spin sector. Next we need to include the
interactions �Eq. �37�� with the singlet �− sector since they
can become relevant once some of the “�” fields are pinned.
We now consider different possibilities.

1. �11
� �0, �22

� �0, and �12
� �0

In this case, only the �12
� is relevant and flows to large

negative values. We therefore pin the fields ��+ and ��−. To
minimize V�, the pinned values need to satisfy Eq. �49�. The
spin sector is gapped and all spin correlations decay expo-
nentially; we also have �B���0, so the translational symme-
try is broken.

Next we include the interactions �Eq. �37��. Using Eq.
�49�, the important part is

W = �4w12
� − 3w12

� �cos�2��+�cos�2��−� . �58�

The ��− is dynamical at this stage, but the ��+ is pinned and
the W now has scaling dimension 1 /g. The possibilities are
the following:

�a� g�1 /2: The W term is irrelevant and the singlet sector
remains gapless. One manifestation of the gaplessness is that
B
�/2 and �
�/2 have power law correlations characterized
by scaling dimension 1 / �4g�. Thus we have a coexistence of
the static period-2 VBS order and power law VBS and
chirality correlations at the wave vectors 
� /2.

�b� g�1 /2: The W term is relevant and pins the field ��−
leaving no gapless modes in the system. Such fully gapped
situation has already been discussed in Sec. IV B 2. This
gives either the period-4 VBS or period-4 chirality phase.

2. �11
� �0, �22

� �0, and �12
� �0

In this case, the �11
� and �22

� are relevant and flow to large
negative values while �12

� is irrelevant. Then both �1� and �2�

are pinned and satisfy cos�2�2�1��=cos�2�2�2��=1. The
spin sector is gapped and all spin correlations are short
ranged. All correlations at � /2 are also short ranged. The
translational symmetry is broken since �B���0. Including
the interactions with the singlet sector as in Sec. IV C 1, we
have the following:

�a� If g�1 /2, the �− sector remains gapless and B2kF1
and

B2kF2
have power law correlations with scaling dimension

g /4. These coexist with the static period-2 VBS order.
�b� If g�1 /2, we also pin ��− and the situation is essen-

tially the same as in Sec. IV B 1. This gives the fully gapped
period-2 VBS phase.

3. �11
� �0, �22

� �0, and �12
� �0

In this case, only the �11
� is relevant and pins �1�. Spin

correlations at 2kF1 and all correlations at � /2 are short
ranged.

We now include the interactions �Eq. �37��; the important
part is

W = − �4w12
� + 3w12

� �cos��2�1��cos��2�2��cos�2��−� .

�59�

Both the “2�” and “�−” modes are dynamical at this stage,
and the W has scaling dimension 1 /2+1 /g.

�a� g�2 /3: The W term is irrelevant and we have two

gapless modes in this phase. �S� ,B�2kF2
have the same scaling

dimension 1 /2+g /4 as in the SBM phase, while B2kF1
has

scaling dimension g /4. Furthermore, �S� ,B�� have scaling di-
mension 1/2.

�b� g�2 /3: The W term is relevant pinning both �2� and
��−. This is the already encountered fully gapped period-2
VBS state.

The case with �11
� �0, �22

� �0, and �12
� �0 is considered

similarly.
Finally, in the case �12

� �0 and either �11
� �0 or �22

� �0,
we cannot easily minimize the potential equation �Eq. �47��
since we have noncommuting variables under the relevant
cosines. We do not know what happens here although one
guess would be that one of the relevant terms wins over the
others and the situation is reduced to the already considered
cases.

To summarize, we have found several phases that can be
obtained out of the spin Bose metal: �1� fully gapped
period-2 VBS; ��2� and �3�� fully gapped period-4 phases,
one with bond energy pattern and the other with chirality
pattern; �4� period-2 VBS coexisting with one gapless mode
in the singlet ��−� sector and power law correlations in B�/2,
��/2; �5� period-2 VBS coexisting with one gapless mode in
the singlet sector and power law correlations in B2kF1

, B2kF2
;

and �6� phase with two gapless modes, one in the spin sector
and one in the singlet sector. It is possible that some of the
gapless phases will be further unstable to effects not consid-
ered here.

The above essentially covers all natural possibilities of
gapping out some or all of the low-energy modes of the
generic SBM phase. Thus, as discussed at the end of Sec.
IV A, we cannot pin ��+ because of the spin rotation invari-
ance. The SU�2� spin invariance also imposes restrictions on
the values of the variables that are pinned; these conditions
are automatically satisfied in the above cases since our start-
ing interactions are SU�2� invariant. Furthermore, we cannot
pin ��− because of the emergent conservation of ��x��−. One
exception is when the Fermi wave vectors take special com-
mensurate values; we discuss this next.
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D. Period-3 VBS state as a possible instability of the SBM in
the commensurate case with kF1=� Õ3

In the ring model �Eq. �1��, the DMRG observes transla-
tional symmetry breaking with period 3 in the intermediate
parameter range flanked by the spin Bose metal on both
sides. Motivated by this, we revisit the spinon-gauge theory
in the special case with kF1=� /3 �then kF2=−5� /6�. Com-
pared to fermion interactions present for generic incommen-
surate Fermi wave vectors, we find one allowed term,

V6 = u6�fR2↑
† fR2↓

† fL1	
† fL2↑fL2↓fR1	 + H.c.� �60�

=− 4u6 cos��2�1��sin�3��− − ��+� . �61�

The pinned ��+ value is kept general at this stage. The scal-
ing dimension is ��V6�=1 /2+9g /4. Let us study what hap-
pens when g�2 /3 and V6 becomes relevant, so u6 flows to
large values. Then ��− and �1� are pinned while the conju-
gate fields ��− and �1� fluctuate wildly. There remains one
gapless mode �2� that is still described by Eq. �20�.

We can use the bond energy and spin operators to charac-
terize the resulting state. First of all, B2kF1

develops long-
range order. Since 2kF1=2� /3, we thus have a valence bond
solid with period 3. Using Eqs. �A8� and �A14�, the micro-
scopic bond energy is

�B�x� 	 cos��2�1��sin�2kF1x + kF1 + ��− + ��+� . �62�

In Eq. �61�, we write 3��−−��+=3���−+��+�−4��+ and use
the pinning condition on 4��+ �Eq. �17��. There are two
cases:

�a� u6 cos�4��+��0: In this case, V6 is minimized by in-
equivalent pinning values �2�1�=�; ��−+��+=� /6,� /6
+2� /3,� /6+4� /3. For ��−+��+=� /6, the period-3 pattern
of bonds is

�B�x� = �. . . ,− 1,
1

2
,
1

2
, . . .� , �63�

while the other two inequivalent pinning values give transla-
tions of this pattern along the chain. A lower bond energy is
interpreted as a stronger antiferromagnetic correlation on the
bond. Then the above pattern corresponds to “dimerizing”
every third bond as shown in Fig. 14�a�.

�b� u6 cos�4��+��0: In this case, V6 is minimized by
�2�1�=0; ��−+��+=� /6,� /6+2� /3,� /6+4� /3. For ��−
+��+=� /6, the period-3 pattern of bonds is

�B�x� = �. . . ,1,−
1

2
,−

1

2
, . . .� , �64�

while the other two inequivalent pinning values give transla-
tions of this along the chain. This pattern corresponds to
every third bond being weaker as shown in Fig. 14�b�.

Continuing with the characterization, we note that S�2kF1
and all operators at � /2 have exponentially decaying corre-

lations. On the other hand, S�2kF2
and B2kF2

have 1 /x power
law correlations because of the remaining gapless �2� mode.
Since 2kF2=� /3, we have period-6 spin correlations on the
original 1D chain.

The physical interpretation is simple. Consider first Fig.
14�a� where every third bond is stronger. A caricature of this
state is that spins in the strong bonds form singlets and are
effectively frozen out. The remaining “free” spins are sepa-
rated by three lattice spacings and are weakly antiferromag-
netically coupled forming a new effective 1D chain. Thus we
naturally have Bethe-chain-like staggered spin and bond en-
ergy correlations in this subsystem, which coexist with the
static period-3 VBS order in the whole system. The situation
in Fig. 14�b� where every third bond is weaker is qualita-
tively similar. Here we can associate an effective spin 1/2
with each three-site cluster formed by strong bonds. These
effective spins are again separated by three lattice spacings
and form a new weakly coupled Bethe chain. Note that while
the theory analysis has the Fermi wave vectors tuned to the
commensuration, the resulting state is a stable phase that can
occupy a finite region in the parameter space, as found by the
DMRG in the ring model �see Sec. V A�.

We can construct trial wave functions using spinons as
follows. In the mean field, we start with the band parameters
t1 and t2 such that kF1=� /3 and then add period-3 modula-
tion of the hoppings. The 
kF1 Fermi points are connected
by the modulation wave vector and are gapped out. The

kF2 Fermi points remain gapless; just as in the Bethe-chain
case, the corresponding bosonized field theory provides an
adequate description of the long-wavelength physics, pre-
dicting 1 /x decay of staggered spin and bond energy corre-
lations.

The above wave function construction and theoretical
analysis are implicitly in the regime where the residual spin
correlations are antiferromagnetic. In a given physical sys-
tem forming such a period-3 VBS, one can also imagine
ferromagnetic residual interactions between the nondimer-
ized spins. Indeed, the DMRG finds some weak ferromag-
netic tendencies in the ring model near the transition to this
VBS state. This is not covered by our spin-singlet SBM
theory but could possibly be covered starting with a partially
polarized SBM state.

E. Other possible commensurate points

Alerted by the period-3 VBS case, we look for and find
one additional commensurate case with an allowed new in-
teraction that can destabilize the spin Bose metal. When
kF1=3� /8, we find a unique quartic term,

V4 = u4�fR1↑
† fR1↓

† �	
fL1	fR2
 + �R ↔ L� + H.c.�

a)

b)

FIG. 14. �Color online� Valence bond solid states with period 3.
Thick lines indicate stronger bonds. Remaining effective spin-1/2
degrees of freedom are also shown. Coexisting with the transla-
tional symmetry breaking, we have 1 /x power law spin correlations
with the antiferromagnetic �dynamic� pattern as shown. The two
cases have slightly different microscopics but are qualitatively simi-
lar on long length scales.
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	− i�1↑�2↑ sin�2��− + ��+ − ��+�sin���− + ��−�

− i�1↓�2↓ sin�2��− + ��+ + ��+�sin���− − ��−� . �65�

�For the schematic writing here, we have ignored the com-
mutations of the fields when separating the �’s and �’s.� The
scaling dimension is ��V4�=1 /2+g+1 / �4g�. This is smaller
than 2 for g� �0.191,1.309� and the interaction is relevant in
this range. Since we have conjugate variables ��− and ��−
both present in the above potential, we cannot easily deter-
mine the ultimate outcome of the runaway flow. It seems safe
to assume that ��+ and ��− will be both pinned, which im-
plies at least some period-2 translational symmetry breaking.
One possibility, perhaps aided by the interactions �Eq. �37��,
is that the ��− is pinned; in this case, the situation is essen-
tially the same as in Sec. IV B 2 and we get some period-4
structure. Another possibility is that the ��− is pinned; in this
case ��4kF1

��0, and since 4kF1=−� /2, we get period-4 bond
pattern.

To conclude, we note that the commensurate cases in this
section and in Sec. IV D can be understood phenomenologi-
cally by monitoring the wave vectors of the energy modes

BQ. The dominant wave vectors are 
2kFa, 
� /2, and

4kF2= �4kF1. When 4kF2 matches with � /2, we get the
kF1=3� /8 commensuration of this section �here also 2kF1
matches with kF2−kF1, while 2kF2 matches with 3kF1+kF2�.
When 4kF2 matches with 2kF1, we get the kF1=� /3 com-
mensuration of Sec. IV D. Tracking such singular wave vec-
tors in the DMRG is then very helpful to alert us to possible
commensuration instabilities, and both cases are realized in
the ring model with additional antiferromagnetic J3=0.5J1
discussed in Sec. V B �cf. Fig. 16�.

V. DMRG STUDY OF COMMENSURATE INSTABILITIES
INSIDE THE SBM: VBS-3 AND CHIRALITY-4

A. Valence bond solid with period 3

As already mentioned in Sec. III, we find a range of pa-
rameters where the SBM phase is unstable toward a valence
bond solid with a period of 3 lattice spacings �VBS-3�. In the
model with Kring=J1=1, this occurs for 1.5�J2�2.5 �cf.
Fig. 8�. The characteristic correlations are shown in Fig. 15
at a point J2=2. The dimer structure factor shows a Bragg
peak at a wave vector 2� /3 corresponding to the period-3
VBS order. The spin structure factor has a singularity at a
wave vector � /3 corresponding to staggered correlations in
the effective spin-1/2 chain formed by the nondimerized
spins �see Fig. 14�. If we zoom in closer, the dimer structure
factor also has a feature at � /3 that can be associated with
this effective chain.

To construct a trial VBS-3 wave function, we start with
the spinon hopping problem that would produce kF1=� /3, so
the first Fermi sea would be twice as large as the second. We
then multiply every third first-neighbor hopping by 1+� and
Gutzwiller project; for the point in Fig. 15 we find optimal
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FIG. 15. �Color online� Spin and dimer structure factors at a
representative point in the VBS-3 phase, Kring=J1=1, J2=2, mea-
sured in the DMRG for system size L=96 �we do not show the
chirality as it is not informative�. The most notable features are the
dimer Bragg peak at 2� /3 corresponding to the static VBS order
and also the spin singularity at � /3 corresponding to the effective
spin-1/2 chain formed by the nondimerized spins �see Fig. 14�. The
trial VBS-3 wave function is constructed as described in the text.
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FIG. 16. �Color online� Phase diagram of the J1-J2-Kring model
with additional antiferromagnetic third-neighbor coupling J3

=0.5J1 introduced to stabilize spin-singlet states. The study is along
the same cut Kring=J1 as in Fig. 8, and the overall features are
similar, with the following differences. The ground state is singlet
throughout eliminating the difficult partial FM region to the left of
the VBS-3 �and the VBS-3 phase is somewhat wider�. There is a
sizable spin-gapped region between the Bethe-chain and SBM
phases �see text for more details�. A new spin-gapped phase with
period-4 chirality order appears inside the SBM to the left of the
VBS-3.
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�=1. This gaps out the larger Fermi sea but leaves the
smaller Fermi sea gapless. Our wave function is crude and
shows a stronger dimer Bragg peak than the DMRG and
somewhat different spin correlations at short scales, but oth-
erwise captures the qualitative features as can be seen in Fig.
15.

The origin of the VBS-3 phase can be traced to the insta-
bility of the SBM at special commensuration �cf. Secs. IV D
and IV E�. Indeed, in Fig. 7 we can follow the evolution of
the singular wave vectors in the SBM phase between the
VBS-2 and VBS-3. As we decrease J2 moving toward the
VBS-3, the 4kF2 and 2kF1 singular wave vectors in the bond
energy approach each other and coincide at 2� /3. When this
happens, there is a unique umklapp term that can destabilize
the SBM and produce the VBS-3 state as analyzed in Sec.
IV D. The instability requires g�2 /3 for the SBM Luttinger
parameter. In this case according to Table I the 4kF2 singu-
larity in the dimer is stronger than the 2kF1,2, which is in
agreement with what we see in the neighboring SBM in Fig.
7. The re-emergence of the 4kF2 and 2kF1 at the other end of
the VBS-3 phase is obscured here by the weak ferromagnetic
tendency �but is present in a model where this tendency is
suppressed �see Fig. 16��.

B. Enhancement of the spin-singlet SBM by antiferromagnetic
third-neighbor coupling J3=0.5 and a new phase with

chirality order with period 4

As discussed in Sec. III C, in the original J1-J2-Kring
model, states in the SBM region near the left boundary of the
VBS-3 tend to develop a small magnetic moment. We con-
jecture that this occurs in the second spinon Fermi sea and
suggest that an antiferromagnetic J3 will stabilize the SBM
phase with spin-singlet ground state. One motivation comes
from the picture of the neighboring VBS-3, where the non-
dimerized spins are loosely associated with the second Fermi
sea. These spins are three lattice spacings apart, so adding
antiferromagnetic J3 should lead to stronger antiferromag-
netic tendencies among them and also in the physics associ-
ated with the second Fermi sea.

We have performed a detailed study adding a modest J3
=0.5 to the original model �Eq. �1�� along the same cut
Kring=J1=1. Our motivating expectations are indeed borne
out. Figure 16 shows the phase diagram together with the
evolution of the singular wave vectors as a function of J2 /J1.
While the overall features are similar to the phase diagram in
the J3=0 case �Fig. 8�, a few points are worth mentioning.

First, the partial spin polarization is absent in the whole
SBM phase between the Bethe-chain and VBS-3 phases. The
DMRG converges confidently to spin-singlet ground state for
L=96. All properties are similar to those in Figs. 4 and 6,
providing further support for the singlet SBM phase in the
original J3=0 model. The VBS-3 phase and the SBM phase
between the VBS-3 and VBS-2 are qualitatively very similar
in the two cases J3=0 and J3=0.5 and are not discussed
further here.

An interesting feature in the model with J3=0.5 is the
presence of a sizable phase with spin gap intervening be-
tween the Bethe-chain and SBM phases. Our best guess is

that this phase has period-2 VBS order, although we do not
see a clear signature in the dimer correlations. Our DMRG
states in this region show very weak �if any� dimerization of
the first-neighbor bonds, which may explain the lack of clear
order in these dimer correlations. On the other hand, we see
a sizable period-2 dimerization of the third-neighbor bonds

�S��x� ·S��x+3�� but have not measured the corresponding
bond-bond correlations to confirm long-range order. We have
not explored possible theoretical routes to understand the
origin of this phase yet and leave our discussion of this re-
gion as is.

We now turn to one more new phase found in the J3
=0.5 model. In a narrow region inside the SBM phase not far
from the left end of the VBS-3, we again find a spin-gapped
phase. We identify this as having period-4 order in the chiral-
ity �chirality-4 phase�. Figure 17 presents point J2=1.5, J3
=0.5. Looking at the singular wave vectors in Fig. 16, we see
that this point occurs roughly where qlow=2kF2 passes � /4.
Analysis in Sec. IV E suggests an instability gapping out all
modes and leading to some period-4 structure. Indeed, the
DMRG spin and dimer structure factors show only some
remnants of features near 2kF1, 2kF2, while the chirality
shows a sharp peak at � /2. Looking at real-space correla-
tions, our L=96 DMRG state breaks translational symmetry.
The pattern of chirality correlations is consistent with the
period-4 order shown in Fig. 13. The pattern of dimer corre-
lations is also consistent with this picture and shows modu-
lation with period 2, which can be seen as a feature at � in
the dimer structure factor in Fig. 17.

To summarize, with the help of modest J3=0.5 we have
stabilized the spin-singlet SBM states between the Bethe-
chain and VBS-3 phases. By suppressing potential weak fer-
romagnetism, we have uncovered the chirality-4 phase,
which can be understood as arising from the instability of the
SBM at the special commensuration discussed in Sec. IV E.

VI. ATTEMPT TO BRING OUT PARTIALLY
MAGNETIZED SPIN BOSE-METAL BY FERROMAGNETIC

THIRD NEIGHBOR COUPLING J3=−0.5

In the original model �Eq. �1��, we do not have a clear
understanding of the partial FM states to the left of the
VBS-3 phase in Fig. 2. As discussed in Sec. III C, we suspect
that there is a tendency to weak ferromagnetism in the sec-
ond Fermi sea. However, the magnetizations that we measure
are not large: e.g., they are significantly smaller than if we
were to fully polarize the second Fermi sea, and it is difficult
to analyze such states. Here we seek better control over the
spin polarization by adding modest ferromagnetic J3=−0.5
in hopes of stabilizing states with a full spontaneous polar-
ization of the second Fermi sea, which is easier to analyze.

We do not have a detailed phase diagram as for the J3
=0 and J3=0.5 cases. We expect it to look crudely similar to
Figs. 8 and 16, with a narrower �if any� VBS-3 region and
with a wider partially polarized SBM region. We indeed find
stronger ferromagnetic tendencies in the range 0�J2�2.
However, we cannot claim achieving robust full polarization
of the second Fermi sea and understanding all behaviors. The
largest magnetization and properties closest to our expecta-
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tions are found in the middle region near J2�1. With this
cautionary note warranting more work, we now present re-
sults for J2�1 to illustrate our thinking about such states.

The DMRG study proceeds as follows. We start as before
working in the Stot

z =0 sector. We measure the spin structure
factor and calculate the total spin Stot from Eq. �32�, which
can give a first indication of a nonzero magnetization. How-

ever, for the larger system sizes, the DMRG finds it difficult
to converge to integer-valued Stot due to a mixing of states
with different total spins, and this leads to significant uncer-
tainty. To check the value of the ground-state spin, we run
the DMRG in sectors with different Stot

z , expecting the
ground-state energy to be the same for Stot

z =0, . . . ,Stot and
then to jump to a higher value for Stot

z �Stot.
As an example, at a point J2=1 for system size L=48 we

find that the DMRG energy is the same in the sectors Stot
z

=0, . . . ,5 and then jumps, so the ground-state spin is deter-
mined as Stot=5. The DMRG convergence is good and the

SU�2�-invariant structure factor �S�q ·S�−q� is the same mea-
sured in the different sectors Stot

z �5, indicating that these
states indeed belong to the same multiplet.

The situation is less clear for L=96 because of reduced
convergence. At the point J2=1 the extensive energies ob-
tained by the DMRG in the sectors Stot

z =0, . . . ,10 are non-
systematic and are within 0.1J1 of each other, with the lowest
energy found in the Stot

z =10 sector. Also, the SU�2�-invariant
structure factors differ slightly and the estimates of Stot vary
around Stot	8–10. The convergence is best in the highest
Stot

z =10 sector, where the total spin is found to be accurately
Stot=10; the improved convergence is indeed expected since
there are fewer available low-energy excited states to mix
with �e.g., spin-wave excitations of the ferromagnet are not
present in the highest Sz sector�. Interestingly, we find a fully
converged state in the Stot

z =11 sector with Stot=11 whose
energy is only slightly higher, which probably adds to the
above convergence difficulties. More importantly, the energy
jumps to a significantly higher value in the sector Stot

z =12.
Our best conclusion is that the total spin of the ground state
is Stot=10.

Turning to the VMC study, we consider a family of varia-
tional Gutzwiller states where we allow different spin up and
spin down populations of the two Fermi seas centered around
k=0 and � �we do not attempt any further improvements on
top of such bare wave functions�. In the model parameter
region discussed here, we find that the optimal such states
have a fully polarized second Fermi sea and an unpolarized
first Fermi sea. For the L=48 example quoted above, the
optimal VMC polarization indeed matches the DMRG Stot
=5, while for the L=96 case the optimal VMC state has
Stot=11 and a state with Stot=10 is very close in energy.
Appendix B 3 provides more details on the properties of
such Gutzwiller states, while here we simply compare the
VMC and DMRG measurements.

The DMRG structure factors for the J2=1, J3=−0.5, and
L=96 systems are shown in Fig. 18, together with the VMC
results for the Gutzwiller wave function with Stot=10. A no-
table difference from the singlet SBM states of Sec. III is that
the characteristic peaks are no longer located symmetrically
about � /2. For example, in the trial state we have prominent
wave vectors 2kF2 and 2kF1 that satisfy 2kF2+2�2kF1=2�;
also, we have a wave vector −kF2−kF1, which is now differ-
ent from � /2. It is not easy to discern all wave vectors in
Fig. 18 because the 2kF2 happens to be close with the −kF2
−kF1. Nevertheless, the overall match between the DMRG
and VMC suggests that the trial wave function captures rea-
sonably the nature of the ground state.
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FIG. 17. �Color online� Spin, dimer, and chirality structure fac-
tors at a point in the tentative chirality-4 phase, Kring=J1=1, J2

=1.5, and J3=0.5, measured in the DMRG for system size L=96.
Note the absence of sharp features in the spin correlations, which
suggests a spin gap, while the dimer correlations have only a feature
at � corresponding to period-2 modulation. On the other hand, the
chirality structure factor shows a Bragg peak at � /2 that grows with
increasing system size. The pattern of chirality correlations in real
space is consistent with the order shown in Fig. 13.
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Working in the sector Stot
z =Stot also allows more detailed

comparison between the DMRG and VMC. In this case,
there is a sharp distinction between the �Sq

zS−q
z � and �Sq

xS−q
x �

structure factors. The former has singular wave vectors 2kF1,
2kF2, and −kF2−kF1, while the latter is lacking the wave vec-
tor 2kF2 since there is no spin-flip process across the second
Fermi sea. Our measurements are shown in Fig. 19. The
wave vectors 2kF2 and −kF2−kF1 are too close to make a
more clear-cut distinction; nevertheless, the VMC reproduces
all details quite well.

In analogy with the SBM theory, we expect the 2kF1 and
2kF2 singularities to become stronger compared with the bare
Gutzwiller and the −kF2−kF1 to become weaker; this is
roughly consistent with what we see in the DMRG structure
factors. As discussed in Appendix B 3, however, we do not
have a complete description of such a partially polarized
SBM phase that must incorporate ferromagnetic spin waves
as well as the low-energy SBM modes. This is left for future
work. We also mention that the closeness of the 2kF2 and
−kF2−kF1 warns us that the system is near a commensuration
point with kF1=2� /5 where it can be further unstable, which
requires more study.

To summarize, by adding modest ferromagnetic J3=−0.5
we have realized the SBM state with fully polarized second
Fermi sea, confirming our intuition about the origin of the
weak ferromagnetic tendencies in the original model dis-
cussed in Sec. III C. A more thorough exploration of the
phase diagram in the model with J3=−0.5 as well as in the
original model in the partial FM region is clearly warranted
to develop better understanding of such partially ferromag-
netic states.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We have summarized the main results and presented
much discussion particularly in Sec. I. Perhaps one point we
would like to reiterate is the remarkable coincidence between
the sign structure present in the DMRG wave functions for
the spin model SBM phase and the sign structure in the spin
sector of free fermions on the ladder �e.g., metallic elec-
trons�. This sign structure is encoded in the singular wave
vectors �“Bose surfaces”�, and indeed the Gutzwiller-
projected wave function with just one variational parameter
is sufficient to reproduce the locations of all the singularities
throughout the observed SBM phase.

We conclude by mentioning some standing questions and
future directions. First, in the ring model, we have focused
on the spin Bose metal and dealt with other phases only as
needed to sketch the rich phase diagram. For example, we
have not studied carefully the VBS-2 region, which might
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FIG. 18. �Color online� Spin and dimer structure factors at a
tentative point with partial ferromagnetism, Kring=J1=1, J2=1, and
J3=−0.5, measured in the DMRG for system size L=96. The cal-
culations are done in the sector Stot

z =10 where the DMRG is well
converged and gives Stot=10, which we think is the true ground-
state spin. The VMC state has the second Fermi sea fully polarized
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N1↑=N1↓=38. Vertical lines label important wave vectors 2kF1,
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harbor additional phases. We have not studied adequately
�numerically or analytically� the spin-gap region between the
Bethe-chain and SBM phases in the J3=0.5 model �Fig. 16�.
One question to ask here is whether there is a generic insta-
bility when we start populating the second Fermi sea or
whether we can go directly from the Bethe-chain phase to the
SBM. More generally, we have not studied various phase
transitions in the system.

Next, while we understand the long-wavelength SBM
theory with its single Luttinger parameter g, we have found
that the Gutzwiller wave functions represent only the special
case g=1 and cannot capture the general situation g�1. It
would clearly be desirable to construct spin-singlet wave
functions appropriate for the general case. Even thinking
about the Gutzwiller wave functions, it could be interesting
to understand the observed g=1 analytically and ask if they
may be exact ground states of some Hamiltonians �in the
spirit of the Haldane-Shastry model42,43�.

On a separate front, we have encountered an interesting
possibility of the spin Bose metal with partial ferromag-
netism occurring in one of the subbands, but more work is
needed to fully understand the numerical observations and
develop analytical theory. Even without a spontaneous mo-
ment in the ground state, our observations suggest that in the
regime between the Bethe-chain and VBS-3 phases the sec-
ond band is narrow in energy. Some ferromagnetic instability
or possibility of spin-incoherent regime in one of the bands
can lead to anomalous transport properties in such a quantum
wire, a topic of much current interest.21,44–46

Looking into future, it will be interesting to consider elec-
tron Hubbard-type models on the two-leg triangular strip and
look for possible SBM phase. The Hubbard model has been
studied in a number of works,47–50 but the focus has been
mainly on the conventional insulating phases such as the
Bethe-chain and VBS-2 states. This is appropriate in the
strong Mott insulator limit, t1, t2�U, where the effective
spin model is the J1-J2 model with J1=2t1

2 /U and J2
=2t2

2 /U. However, at intermediate coupling just on the insu-
lator side, one needs to include multiple-spin exchanges, and
the leading new term is the ring exchange with Kring
=20t1

2t2
2 /U3. As we have learned, this ring term stabilizes the

SBM phase, so revisiting the Hubbard model with the in-
sights gained here is promising. In Sec. II B, we approached
the SBM by starting with a metallic two-band electron sys-
tem �“C2S2”� and gapping out only the overall charge mode
“�+.” Then it is natural to look for the SBM near an ex-
tended such C2S2 metallic phase, and we may need to con-
sider electron models with further-neighbor repulsion to
open wider windows of such phases.

Last but not least, we would like to advance the program
of ladder studies closer to 2D. It is prudent to focus on the
spin model with ring exchanges. On the exact numerics
front, four to six legs are probably at the limit of the DMRG
capabilities. The VMC approach should still be able to cap-
ture the critical surfaces if they are present since they are
dictated by short-distance physics; on the other hand, the
bare Gutzwiller will likely fail even more in reproducing
correct long-distance behavior. We do not know how far the
present bosonization approach can sensibly hold going to
more legs. These are challenging but worthwhile endeavors

given the experimental importance of understanding weak
Mott insulators.
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APPENDIX A: OBSERVABLES IN THE SBM PHASE

We have defined spin S��x�, bond energy B�x�, and chiral-
ity ��x� observables in Sec. II C �cf. Eqs. �22� and �23��.
Here we find detailed bosonized forms by a systematic con-
struction of observables in the SBM �and will find more
observables on the way�.

In the gauge theory treatment �Sec. II A�, we consider
gauge-invariant objects constructed from the spinon fields; in
the interacting electron picture of Sec. II B, these are opera-
tors that do not change the total charge.

We begin with fermion bilinears and first consider the
ones composed of a particle and a hole moving in opposite
directions. Such bilinears are expected to be enhanced by
gauge fluctuations since parallel gauge currents experience
Amperean attraction. We organize these bilinears as follows:

S�2kFa
�

1

2
fLa	

† �� 	
fRa
, �A1�

�2kFa
�

1

2
fLa	

† fRa	, �A2�

S��/2 �
1

2
fR1	

† �� 	
fL2
 +
1

2
fR2	

† �� 	
fL1
, �A3�

��/2 �
1

2
fR1	

† fL2	 +
1

2
fR2	

† fL1	, �A4�

���/2 �
1

2
fR1	

† �� 	
fL2
 −
1

2
fR2	

† �� 	
fL1
, �A5�

��/2 �
1

2
fR1	

† fL2	 −
1

2
fR2	

† fL1	, �A6�

with S�−Q=S�Q
† , etc. The microscopic spin operator expanded

in terms of the continuum fermion fields readily gives the

listed S�Q.
The bond energy can be approximated as the spinon hop-

ping energy,

B�x� 	 − t�f	
†�x�f	�x + 1� + H.c.� �A7�

�recall that we work in the gauge with zero spatial vector
potential�. Expansion in terms of the continuum fields gives,
up to a real factor,
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BQ 	 eiQ/2�Q. �A8�

Such connection between BQ and �Q is understood below for
all Q��. The objects �Q are convenient because of their
simpler transformation properties under lattice inversion,
�Q↔�−Q.

The physical meaning of the operators ���/2 and ��/2 can
be established on symmetry grounds. Thus, � is the spin
chirality defined in Eq. �23�. The expression in terms of bi-
linears can also be found directly by considering the circula-
tion of the gauge charge current around the �x−1,x ,x+1�
loop,

χ(x) ∼ �
∑

itrr′ [f
†
α(r)fα(r′) − H.c.] .

�A9�
This is familiar in slave particle treatments:14 the circulation
produces internal gauge flux whose physical meaning is the

spin chirality. On the other hand, �� is related to the following
microscopic operator:

D� �x� = S��x� � S��x + 1�, D� �/2 = ei�/4���/2. �A10�

At Q=� /2, this enters on par with S� , B, and �.
The bosonized expressions at the 2kFa are

S2kFa

x = − i�a↑�a↓e
i��+e
i��− sin��2�a�� , �A11�

S2kFa

y = − i�a↑�a↓e
i��+e
i��− cos��2�a�� , �A12�

S2kFa

z = − ei��+e
i��− sin��2�a�� , �A13�

�2kFa
= iei��+e
i��− cos��2�a�� , �A14�

where the upper or lower sign in the exponent corresponds to
a=1 or 2. The pinned value ��+, which is determined by
minimizing Eq. �17�, is left general at this stage. It is not so
important for the qualitative behavior at the 2kFa and � /2
but is crucial at a wave vector � later.

For each a, the �S� ,B�2kFa
structure is similar to that in a

single Bethe chain except for the �� exponentials. As in the
Bethe chain, we expect the spin and VBS correlations to be
closely related—in particular, they decay with the same
power law. The corresponding scaling dimension in the
fixed-point theory �Eq. �18�� is

��S�2kFa
� = ��B2kFa

� =
1

2
+

g

4
. �A15�

The bosonized expressions at the � /2 are as follows:

S�/2
x = e−i��+�− i�1↑�2↓e

−i��− sin���− + ��+�� �A16�

�− i�1↓�2↑e
i��− sin���− − ��+�� , �A17�

S�/2
y = e−i��+�− i�1↑�2↓e

−i��− cos���− + ��+�� �A18�

�+ i�1↓�2↑e
i��− cos���− − ��+�� , �A19�

S�/2
z = e−i��+�− i�1↑�2↑e

−i��+ sin���− + ��−�� �A20�

�+ i�1↓�2↓e
i��+ sin���− − ��−�� , �A21�

��/2 = e−i��+�− i�1↑�2↑e
−i��+ sin���− + ��−�� �A22�

�− i�1↓�2↓e
i��+ sin���− − ��−�� , �A23�

��/2 = e−i��+�− �1↑�2↑e
−i��+ cos���− + ��−�� �A24�

�− �1↓�2↓e
i��+ cos���− − ��−�� . �A25�

Expressions for ���/2 can be obtained from those for S��/2
essentially by interchanging sines and cosines. As before,
B�/2 is given by Eq. �A8�. The above details are needed
particularly when we discuss phases arising as instabilities of
the SBM �Secs. IV B–IV E�, while in the SBM we immedi-
ately see that all scaling dimensions are equal,

��S��/2� = ��B�/2� = ��D� �/2� = ����/2� =
1

2
+

1

4g
.

�A26�

This completes the “enhanced” bilinears. We also men-
tion, without giving detailed expressions, “nonenhanced” bi-
linears at wave vectors Q= 
 �kF2−kF1�. Their scaling di-
mension is

��S�Q� = ��BQ� = ��D� Q� = ���Q� =
1

2
+

1

4g
+

g

4
,

�A27�

which is always larger than the spinon mean field value of 1.
Finally, we have bilinears carrying zero momentum—

essentially JPaa, J�Paa from Eq. �34�. These give conserved
densities and currents and have scaling dimension 1. We spe-
cifically mention examples leading to Eqs. �25�–�27�,

SQ=0
z 	 JR11

z + JL11
z + JR22

z + JL22
z =

1

�
�x��+, �A28�

�Q=0 	 JR11 + JL11 − JR22 − JL22 =
2

�
�x��−, �A29�

�Q=0 	 JR11 − JL11 − JR22 + JL22 =
2

�
�x��−. �A30�

�One way we can make the identifications in the last two
lines is by using physical symmetry arguments.�

So far, we have only considered fermion bilinears. Since
the theory is strongly coupled, we should also study contri-
butions with more fermion fields. We now include four-
fermion terms focusing on the spin, bond energy, and chiral-
ity operators that are measured in the DMRG. First, there
appears a new wave vector 4kF1=−4kF2 in the bond energy
via

�4kF1
: fL1↑

† fL1↓
† fR1↑fR1↓ 	 ei2��+ei2��−, �A31�
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fR2↑
† fR2↓

† fL2↑fL2↓ 	 e−i2��+ei2��−. �A32�

The two contributions come with independent numerical fac-
tors and can also be generated as ��2kF1

�2 and ��−2kF2
�2. Once

the ��+ is pinned, there is only one qualitatively distinct con-
tribution and the scaling dimension is

��B4kF1
� = g . �A33�

Note that for sufficiently small g�2 /3, the power law decay
is slower than that of the bilinears B2kFa

. There is no compa-
rable 4kF1 contribution to the spin operator.

Four-fermion terms bring out another important wave
vector, Q=�. We list independent dominant such contribu-

tions to S��, B�, and ��,

S�
z : sin�2��+�sin�2��+�, sin�2��−�sin�2��+�; �A34�

B�: �cos�2��+� + cos�2��−��sin�2��+� , �A35�

�cos�2��+� + �̂ cos�2��−��sin�2��+� , �A36�

�̂ cos�2��−�sin�2��+�; �A37�

��: �̂ sin�2��−�sin�2��+� . �A38�

These can be generated by combining the previously exhib-
ited bilinears as follows: S�

z :S2kF1

z �2kF2

S2kF2

z �2kF1
+H.c.;

B� : i�2kF1
�2kF2

+H.c., i���/2
2 −��/2

2 �+H.c., i���/2
2 +��/2

2 �+H.c.;
and �� :��/2��/2+H.c. The scaling dimensions are

��S��� = ��B�� = 1, �A39�

����� = 1/g . �A40�

The above observables are present if sin�2��+��0, e.g., if
the ��+ is pinned as in Eq. �14�, which we argued is natural
when the spin model is describing a Mott insulator phase of
a repulsive electron model. On the other hand, the above
contributions would vanish if the pinning potential equation
�Eq. �17�� had v8�0. Some other physical observables con-
taining cos�2��+� and having different symmetry properties
would be present instead. We do not write these out since
both the DMRG and the trial wave functions have signatures
in the spin, VBS, and chirality at the wave vector �, suggest-
ing that the pinning equation �Eq. �14�� is realized. We have
identified several more unique observables at � containing
sin�2��+�; we do not spell these out here since our primary
focus is to understand features in the numerics measuring the

familiar S� , B, and �.
We finally mention that four-fermion terms produce still

more wave vectors, 
�3kF1+kF2�= � �3kF2+kF1�; for ex-
ample, 3kF1+kF2 can be obtained by combining 2kF1 and
−� /2. The scaling dimensions are the same as at 
�kF2
−kF1� �Eq. �A27��.

For completeness, we have also checked six-fermion and
eight-fermion terms. The only new wave vectors where the
scaling dimension can be smaller than 2 are 6kFa=2kFa
+4kFa �scaling dimension 1 /2+9g /4� and 8kFa=4kFa+4kFa

�scaling dimension 4g�. However, one needs small g for
these to become visible and in any case they always have
faster power law decay than at 2kFa and 4kFa. Finally, entries
listed as “subd.” in Table I can be constructed, e.g., as �Q
	�0�Q, which has scaling dimensions 1+���Q�.

Table I summarizes our results for the correlations in the
spin Bose-metal phase. In words, we expect dominant spin
and VBS correlations at the wave vectors 
2kF1, 
2kF2 de-
caying as 1 /x1+g/2 and at the wave vectors 
� /2 decaying as
1 /x1+1/�2g�. The former decay is more slow since stability of
the phase requires g�1. Note that the wave vectors 2kF1 and
2kF2 are located symmetrically around � /2. We also expect a
1 /x2 power law at the wave vectors 0 and �. Next, at the
wave vectors 
�kF2−kF1� and 
�3kF1+kF2�, which are also
located symmetrically around 
� /2, we expect a still faster
power law 1 /x1+1/�2g�+g/2. Furthermore, the bond energy
shows a power law 1 /x2g at 
4kF1. The spin chirality has
similar signatures to the above at 
� /2, 0, 
�kF2−kF1�, and

�3kF1+kF2�, but decays as 1 /x2/g at �. These are the sim-
plest observables that can be used to identify the SBM phase
in a given system. Figure 21 shows measurements in the
Gutzwiller wave function projecting two Fermi seas and
nicely illustrates all singular wave vectors, while it appears
that such wave functions realize a special case with g=1. We
also remark that in the general SBM the presence of the
marginally irrelevant interactions �Eq. �43�� will lead to loga-
rithmic corrections in correlations.51,52

We conclude by describing our treatment of the Klein
factors �see, e.g., Ref. 32 for more details�. We need this
when determining “order parameters” of various phases ob-
tained as instabilities of the SBM �Secs. IV B–IV E�. The

operator �̂ from Eq. �40� has eigenvalues 
1. For concrete-

ness, we work with the eigenstate corresponding to +1: �̂�
+ �= �+ �. We then find the following relation:

�+ ��1↑�2↑� + � = �+ ��1↓�2↓� + � = pure imaginary.

�A41�

This is useful when discussing observables at the 
� /2
wave vectors, for example,

��/2 = − e−i��+�+ ��1↑�2↑� + ��cos���−�sin���+�sin���−�

+ i sin���−�cos���+�cos���−�� , �A42�

��/2 = − e−i��+�+ ��1↑�2↑� + ��cos���−�cos���+�cos���−�

+ i sin���−�sin���+�sin���−�� . �A43�

APPENDIX B: DETAILS OF THE WAVE FUNCTIONS

1. Gutzwiller projection of two Fermi seas

It is convenient to view the spin wave function as that of
hard-core bosons, where up/down spin corresponds to
present/absent boson. In the general spinon construction, we
occupy 
kj

↑ , j=1, . . . ,N↑� orbitals with spin up and 
kj
↓ , j

=1, . . . ,N↓� orbitals with spin down; N↑+N↓=L is the size of
the system. After the Gutzwiller projection, the boson wave
function is
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 bos�
Ri,i = 1, . . . ,N↑�� = det�eikj
↑Ri�det�eipjRi� , �B1�

where the set 
pj , j=1, . . . ,N↑� is a complement to 
−kj
↓ , j

=1, . . . ,N↓� in the Brillouin zone �BZ�. The momentum car-
ried by this wave function is � j=1

N↑ �kj
↑+ pj�=� j=1

N↑ kj
↑+� j=1

N↓ kj
↓

+�q�BZq. In particular, we see that the wave function re-
mains unchanged if we shift all occupied spinon momenta by
the same integer multiple of 2� /L.

We now consider the spin-singlet case when N↑=N↓
=L /2, 
k↑�= 
k↓�. Here L is even and all momenta are integer
multiples of 2� /L, so �q�BZq=�. For convenience, we as-
sume that L is a multiple of 4. Figure 20 illustrates filled k
points for the band in Fig. 3. We have two Fermi seas of
volume N1 and N2 in the symmetric configuration, i.e., sepa-
rated by L /4 unoccupied orbitals on each side around the
Brillouin zone. Relating to the band �Fig. 3�, the larger N1
corresponds to occupied k points centered around 0, while N2
corresponds to points around �. As already noted, a solid
shift of the occupied states leaves the wave function un-
changed. We can then specify such symmetric state as
�N1 ,N2�, which requires only one parameter since N1+N2
=N↑=N↓=L /2. We can readily verify that such �even,even�
states carry momentum 0 and are even under site inversion
operation while �odd,odd� states carry momentum � and are
odd under inversion.

The relative wave vectors connecting the Fermi points are
gauge independent and are observed in various quantities
�see Fig. 21�. Specifically, using variational Monte Carlo,39,40

we measure the spin structure factor and see dominant sin-
gularities at the wave vectors 
2kF1, 
2kF2, and 
�kF1
+kF2�= �� /2, which connect Fermi points with opposite
group velocities. By studying sizes up to L=512 and per-
forming scaling analysis at these wave vectors, the singulari-

ties appear to have the same power law. This is consistent
only with the special case g=1 in the SBM theory �cf. Eqs.
�A15� and �A26� and Table I�. Our direct estimates of the
scaling dimensions are also consistent with the value �
=3 /4 expected in this case. Turning to other less singular
wave vectors, we clearly see V-shaped �	��q�� features at 0
and � corresponding to scaling dimension 1, which is ex-

FIG. 20. View of the wave function constructed by filling k
states of spinons. Here momenta k=2�n /L, n=0,1 , . . . ,L−1, form
a closed circle. Each filled dot is occupied by both spin up and spin
down, producing spin singlet. The projected wave function remains
unchanged if all momenta are shifted by the same amount. Only the
relative configuration matters, and here we show symmetric con-
figuration of the two Fermi seas separated by L /4 unoccupied k
states on either side. This is our “bare Gutzwiller” wave function
for the spin Bose metal.
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FIG. 21. �Color online� Spin, bond energy, and chirality struc-
ture factors in the bare Gutzwiller wave function with two Fermi
seas �N1 ,N2�= �104,24� on the 1D chain of length L=256. The
expected singular wave vectors are marked by vertical lines �here
kF1 and kF2 are defined as in Fig. 3 and all indicated wave vectors
are mod 2��. The structure factors are symmetric with respect to
q→−q, and we only show 0�q��. The character of the singu-
larities is consistent with the special case g=1 in the SBM theory of
Sec. II.
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pected generally. We also see 
�kF2−kF1� with scaling di-
mension 1, which requires g=1.

We next consider VBS correlations and see all of the
above wave vectors, but we cannot quantify the singularities
as accurately. The VBS correlations also show singularities
at 
�3kF1+kF2� and 
4kF2= �4kF1 �the former is also ex-
pected in the spin structure factor but is not visible there,
probably due to amplitude effect, while the 
4kF2 is ex-
pected only in the bond energy�.

Finally, we measure spin chirality correlations and see
dominant singularity at 
� /2 consistent with �=3 /4. We
also see singularities at wave vectors 0, �, 
�kF2−kF1�, and

�3kF1+kF2� consistent with �=1, again as expected in the
special case g=1.

The above appears to hold for a range of relative popula-
tions of the Fermi seas �away from the limiting situations of
a single or two equal Fermi seas�. We are then led to conjec-
ture that such spin-singlet wave functions with two Fermi
seas have correlations given by the SBM theory of Sec. II
and Appendix A with g=1. This conjecture is natural since in
the theory the parameter g depends on the ratio of the two
Fermi velocities �cf. Eq. �21��, while the wave function
knows only about the occupied/unoccupied states and does
not contain the band energy parameters. We leave proving
this conjecture analytically as an open problem.

Given the preceding discussion, it appears that such bare
Gutzwiller wave functions cannot capture fully the properties
of the generic spin Bose metal as described by the theory of
Sec. II with general g�1. It is possible that they are appro-
priate wave functions for some critical end point of the SBM
phase where the parameter g=1, e.g., for the transitions out
of the SBM discussed in Sec. IV B. While the energetics
study with the bare Gutzwiller wave functions gives us first
indications for the SBM phase, it is desirable to have more
accurate trial states. This is what we turn to next, although
only with limited success.

2. SU(2)-invariant improvement of the
Gutzwiller wave functions

To allow more variational freedom, we consider mean
field with both spinon hopping ��k� �Eq. �3�� and spinon
pairing in the singlet channel with real gap function ��k�
�this way, the wave function remains spin rotation and time
reversal invariant�. Generic ��k� would open up gaps, while
we want the wave function to be critical. One way to main-
tain gaplessness is to require ��k� to vanish at the Fermi
points. This can be achieved, for example, by taking

��k� = f�k���k� �B2�

with a smooth f�k�. We have tried several simple functions
f�k�, e.g., expanding in harmonics

f�k� = �
n

fn cos�nk� , �B3�

with few fn treated as variational parameters. Upon writing
out the corresponding Gutzwiller wave function, one can see
that the dispersion ��k� enters only through its sign ��0 or
��0, so in the case with two Fermi seas like in Fig. 20 we

can use the same label �N1 ,N2� and expect similar singular
wave vectors encoded in the relative positions of the “Fermi
points.” We refer to such a state as “improved Gutzwiller”
and can view it as a “gapless superconductor,” although with
caution because of the nonintuitive effects of the projection.
For example, the SU�2� gauge structure of the projective
construction implies that fn=A�n,0 gives the same state as the
bare Gutzwiller independent of A. In practice, we often fix f0
and vary f1, f2.

For the zigzag ring model in the spin Bose-metal regime,
such approach improves the trial energy by about 50%–60%
compared to the difference between the bare Gutzwiller en-
ergy and the exact DMRG ground-state energy. The expo-
nents of the power law correlations in the improved wave
functions appear to remain unchanged from the bare case
although the numerical amplitudes are redistributed to re-
semble the DMRG correlations better, as can be seen in the
examples in Sec. III B �Figs. 4 and 5�. Thus, this approach is
only partially successful since we cannot produce the long-
distance behavior expected in the generic SBM and tenta-
tively seen in the DMRG. Still, the fact that we can signifi-
cantly improve the trial energy while retaining the
underlying gapless character gives us more confidence in the
variational identification of the SBM phase.

We also mention that in the Bethe-chain regime where the
bare Gutzwiller projects one Fermi sea, the gapless super-
conductor improvement with parameters f0, f2 works even
better, bringing the trial energy much closer to the exact
DMRG value and better reproducing short-scale features in
the spin correlations �see Fig. 22�. Such good trial states for
the competing Bethe-chain phase give our VMC more accu-
racy in determining where the SBM phase wins energetically
and more confidence interpreting the DMRG results.

3. States with fully polarized second Fermi sea

Motivated by the possibility of partial ferromagnetism in
some regimes discovered in the DMRG study of the ring
model �see in particular Sec. VI�, we have also considered
Gutzwiller projection of states with unpolarized large Fermi
sea and fully polarized small Fermi sea. The spin correlations
here can be understood using a naive bosonization treatment
starting with such spinon mean field state and following the
same procedure as for the unpolarized spin Bose metal in
Sec. II. The naive long-wavelength theory now has two free
Boson modes. The dominant correlations are expected to be
at wave vectors that connect Fermi points with opposite
group velocities. Taking the polarization axis to be ẑ, the spin
structure factor �Sq

zS−q
z � has dominant singularities at 2kF1,

2kF2, and −kF2−kF1, while the �Sq
xS−q

x � is missing the 2kF2
since there is no spin-flip process across the second �polar-
ized� Fermi sea. We indeed observe such correlations in the
wave functions, and the dominant power law envelope is
consistent with x−4/3, which is what such naive theory would
give if we assume equal velocities near all Fermi points and
ignore all interactions other than gapping out the overall
charge mode �Eq. �13��. We note, however, that to properly
describe such a partially polarized phase in the system with
short-range interactions, we would need to also account for
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the ferromagnetic spin wave, which is not present in our
wave functions42 and not treated in the more general �but still
naive� bosonization theory outlined above. We do not pursue
this further here.

APPENDIX C: DMRG RESULTS IN CONVENTIONAL
PHASES ON THE ZIGZAG CHAIN

For ease of comparisons, here we show our DMRG mea-
surements in the conventional Bethe-chain and VBS-2

phases identified on the zigzag chain in earlier works.18,20 We
take representative points from the same cut Kring /J1=1 stud-
ied in detail in Sec. III since this allows us to better relate to
the SBM phase at such significant Kring values.

1. Bethe-chain phase

Figure 22 shows spin, dimer, and chirality structure fac-
tors at J2=−1, measured in the DMRG for system size L
=192. The DMRG can still obtain reliable results with m
=3200 states kept in each block, and this is related to the
smaller central charge than in the SBM phase �as discussed
in Sec. III D�. Figure 22 also shows the structure factors in
the bare Gutzwiller-projected single Fermi sea state,
�N1 ,N2�= �96,0�, and in the improved Gutzwiller wave func-
tion �see Appendix B�; the latter achieves significantly better
trial energy and overall match with the DMRG results.

At long distances, we expect both the spin and dimer

correlations to decay with the same power law: �S��x� ·S��0��
	�−1�x /x, �B�x�B�0��	�−1�x /x, up to logarithmic correc-
tions. We indeed see roughly such power law in the real-
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FIG. 22. �Color online� Spin, dimer, and chirality structure fac-
tors at a representative point in the Bethe-chain phase, Kring=J1

=1, J2=−1, measured in the DMRG for system size L=192. We
also show structure factors in the bare Gutzwiller-projected single
Fermi sea state, �N1 ,N2�= �96,0�, and in the improved Gutzwiller
wave function with parameters f0=1, f1=0, and f2=−1.4 �see Ap-
pendix B for wave function details�.

0.0

1.0

2.0

3.0

4.0

5.0

0 π/2 π

S
pi

n
st

ru
ct

ur
e

fa
ct

or
<
S

q
•
S

-q
>

q

Kring = J1 = 1, J2 = 4, J3 = 0; L=192

DMRG
Gutzw (48,48)

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 π/2 π

D
im

er
st

ru
ct

ur
e

fa
ct

or
<
B

q
B

-q
>

q

DMRG
Gutzw (48,48)

FIG. 23. �Color online� Spin and dimer structure factors at a
point in the VBS-2 phase, Kring=J1=1, J2=4, measured in the
DMRG for system size L=192. The exhibited trial wave function is
the Gutzwiller projection of two equal Fermi seas, �N1 ,N2�
= �48,48�. This wave function gives decoupled legs expected in the
large J2 limit and does not have any VBS-2 order; however, it
reproduces the DMRG data quite well, so at this Kring=J1 cut the
system is close to the decoupled-legs limit even just outside the
SBM.
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space correlations. Some quantitative aspects are different
from the pure Heisenberg chain, for which the bare
Gutzwiller state is a good approximation. Thus, the spin
structure factor in Fig. 22 has a larger amplitude of the q
=� singularity and also develops a hump at wave vectors
below � /2. Both these features are captured by the improved
Gutzwiller wave function. On the other hand, the dimer
structure factor has a significantly smaller amplitude of the
q=� singularity than the pure Heisenberg chain and the bare
Gutzwiller; the improved Gutzwiller wave function moves in
the right direction compared to the bare one but still does not
capture well the amplitude at �.

For the chirality correlations, we expect ���x���0��
	�−1�x /x3+1 /x4, and we indeed see some fast decay in the
real-space data comparable with the power law behavior. The
corresponding momentum-space singularities at q=� and q
=0 are very weak. In agreement with this, we do not see any
features in the chirality structure factor in Fig. 22.

This Bethe-chain phase example allows contrasting with
the SBM phase in Sec. III B, where we see different singular
wave vectors and prominent features in all these observables
including the chirality. The experience of being able to im-
prove significantly the short-scale features in the trial wave
functions carries over to the SBM, although in the Bethe-
chain phase we have an advantage that our wave functions
also capture the long-distance power laws correctly.

2. Valence bond solid with period 2

Consider now the large J2 case. In the J2→� limit, we
have decoupled legs, and each behaves as a Heisenberg spin

chain. Finite J1 /J2 and Kring /J2 will couple the two legs and
will likely open a spin gap18,19 producing a VBS state with
period 2 �Fig. 11�. Figure 23 shows our measurements at a
representative point J2=4 from the Kring=J1=1 cut. The spin
correlations show a dominant peak at a wave vector q
=� /2 and bond correlations have a peak at q=�. We com-
pare with the Gutzwiller projection of two equal Fermi seas
in the 1D zigzag chain language, or, equivalently, decoupled
legs in the two-leg ladder picture. This wave function is thus
strictly appropriate only in the J2→� limit, but it clearly
reproduces the DMRG data quite well.

Looking at Fig. 23, there is not much direct evidence for
the VBS-2 order in the DMRG data. It is safe to say only that
upon exiting the SBM phase along this cut, we are close to
the fixed point of decoupled legs. One argument for the
VBS-2 here could be the continuity to the strong VBS-2
phase in the broader phase diagram �Fig. 2�. As is known,18

the region J2	0.4–2 along the Kring=0 axis has strong
VBS-2 order. However, this does not preclude possibility of
more phases in the model with ring exchanges. Thus, along
the way at points like Kring=0.3, J2=1.5 and Kring=0.2, J2

=1.2 we also see a dimer feature at q=� /2 in addition to a
likely Bragg peak at q=�. Since our primary interest is the
SBM phase, we do not explore the states at large J2 further,
loosely referring to all of them as VBS-2 in Fig. 2.
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